MUX WORKSHEET

1) Can MUX be used as a universal gate?

Example 1) Find which gate the 2:1 mux represents,

1
$$IO$$

1 IO
1 IO

2) Find which gate the 2:1 mux represents,

3) Find which gate the 2:1 mux represents,

Boolean function implementation by using MUX:

For implementing any Boolean function of n- variables with 2ⁿ: 1 MUX, We can follow the below procedure,

- 1) Express the function in its sum of products (SOP) form.
- In the ordered sequence of n variables, connect (n 1) variables to the select line and the single highest order position variable to the input line with complemented or uncomplemented form including 0 and 1.
- 3) List the inputs of MUX (all the minterms) in two rows. The first row lists all those minterms where single variable is complemented and then second row with uncomplemented form.
- 4) Circle all the minterms of the function and inspect each column separately.
- 5) If two minterms in a column are not circled, apply '0' to the corresponding MUX input.
- 6) If two minterms are circled, apply '1' to the corresponding MUX input.
- 7) If one minterm is circled (either upper row or lower row), then its front value is the corresponding MUX input.

Example 2) Implement $f(A, B, C) = \sum m(0, 1, 4, 6, 7)$ by using 4:1 MUX

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

A and B => select lines, c =>input.

	10	11	12	13
<i>C</i> ′	0	2	4	6
С	1	3	5	7
	1	0	C'	1

- 4) Implement $f(A, B, C) = \sum m(2, 3, 4, 7)$ by using 4:1 MUX.
- 5) Implement $f(A, B, C) = \sum m(1, 5, 6, 7)$ by using 4:1 MUX.
- 6) Find the output of the function f(A, B, C) = ??? given by MUX.

7) Implement the following Boolean function with a 4: 1 multiplexer and external gates.

$$F(A,B,C,D) = \sum (0,8,10,11,12,13,14,15)$$

Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of variables C and D. These values are obtained by expressing F as a function of C and D for each of the four cases when AB = 00, 01, 10, and 11. These functions may have to be implemented with external gates.

- 8) The logic function F = AC + ABD + ACD is to be realized using an 8 to 1 multiplexer. Use A, C and D as control inputs.
- 9) A Demultiplexer has how many inputs?
- 10) A Demultiplexer with n select lines has ____ outputs?