
PAL	Worksheet Tracing	computation CSC	15

Sometimes	what	you	think	your	program	does	and	what	it	actually	does	are	
two	different	things.	This	worksheet	is	about	some	different	ways	of	
discovering	what	your	code	actually	does.	

Desk	checking	is	the	process	of	simulating	the	steps	your	code	does	without	
using	a	computer.	You	mentally	execute	each	program	statement,	keeping	
track	of	the	current	value	of	each	variable.	

1)	Desk	check	the	following	code.	Begin	by	writing	"x:",	"y:",	and	"tmp:",	each	
on	its	own	line.	Then	pretend	you	are	the	computer	and	execute	each	line	of	
code	until	the	program	is	Jinished.	Each	time	a	variable	is	assigned,	cross	out	
the	old	value	and	write	the	new	one	on	the	variable's	line.	

int x = 12;
int y = 9;
while (y != 0) {
 int tmp = x % y; // the remainder of x / y
 x = y;
 y = tmp;
}
System.out.println("GCD = " + x);

2)	Desk	check	the	following	code	

for (int i = 1; i <= 3; i++) {
 for (int j = 1; j <= 4; j++) {
 System.out.print((i * j) + " ");
 }
 System.out.println();
}

3)	Desk	check	the	following	code.	

int total = 25;
for (int number = 1; number <= (total / 2); number++) {
 total = total – number;
 System.out.println(total + " " + number);
}

PAL	Worksheet Tracing	computation CSC	15

Tracing	using	printing	is	not	as	illuminating	but	is	faster	than	desk	checking	
because	it	uses	a	computer.	In	this	technique,	you	insert	a	line	of	code	that	
prints	your	variables	at	some	place	strategic	so	that	you	can	see	their	values	as	
they	change.	

4)	Verify	your	desk	check	answer	in	Problem	1	by	inserting	a	println	
statement	somewhere	in	the	code	and	running	it.	

Good	practice:	Using	your	brain	to	desk	check	your	code	and	then	verifying	
that	your	code	does	what	you	think	it	does	with	your	computer	is	a	powerful	
way	to	ensure	your	intentions	and	the	computer's	interpretation	are	the	same.	

Tracing	with	a	debugger	is	another	way	to	see	what	your	code	is	doing.	Most	
integrated	development	environments	(IDEs)	have	a	built-in	debugger	that	
allows	you	to	stop	the	running	of	your	program	on	a	particular	line	of	code	
(called	a	breakpoint)	and	then	examine	variable	values	and	step	through	
subsequent	lines	of	code.	

5)	Figure	out	how	to	use	your	debugger.	Place	a	breakpoint	on	the	Jirst	line	of	
Problem	1	and	run	the	program	with	the	debugger.	Step	through	the	lines	of	
code	noting	when	variable	values	change.

