
PAL	Worksheet Formatted	Printing CSC	15

To	have	your	program	print	something	to	your	screen,	the	easiest	ways	are

	 System.out.print(“You have: ”); // print doesn’t advance

	 System.out.println(42); // println does advance

Both	convert	what	was	provided	into	a	String	and	then	writes	the	String	to	the	
screen.	Print	does	not	move	the	output	cursor	to	the	next	line	afterward	and	
println	does.

These	print	functions	use	as	much	space	as	needed	to	represent	a	number	and	
will	truncate	after	several	digits	if	the	fractional	part	is	too	long.

	 System.out.println(1.0/4.0); // prints: 0.25

	 System.out.println(2.0/3.0); // prints: 0.6666666666666666

If	you	want	more	control	over	the	formatting	of	what	you	print,	you	could	use	
printf	instead.

Printf	Basics

Here’s	how	you	print	an	int	and	a	double	with	a	space	between	them	using	
printf.	The	\n	advances	the	cursor	to	the	next	line.

	 System.out.printf(“%d %f\n”, 100, 1.0/4.0);

	

You	pass	printf	a	string	in	quotes,	and	in	that	string	should	be	one	or	more	
percent	symbols	each	followed	by	a	format	specifier.	%d	indicates	an	integer	
type	(d	stands	for	decimal	number)	and	%f	indicates	a	floating	point	type.	
After	the	quoted	string,	there	must	be	a	comma-separated	list	of	expressions	
of	the	corresponding	types.	Printf	prints	everything	in	the	quoted	string	with	
the	format	specifiers	replaced	by	their	list	items.	Printf	does	not	advance	the	
cursor	to	the	next	line,	so	you	need	to	include	\n	whenever	you	want	that	to	
happen.

Printf	Practice

1) Open	an	IDE	and	write	a	small	program	that	prints	all	of	the	above	
examples.

2) Write	a	small	program	that	outputs	the	following	times-table	using	five	
printf	statements,	one	per	line.	For	the	nine	results	in	the	table,	use	%d	for	
each	and	in	your	printf’s	expression	list	put	the	appropriate	

PAL	Worksheet Formatted	Printing CSC	15

multiplications	(eg,	instead	of	4	put	2*2). 
 
 1 2 3 

1 | 1 2 3 
2 | 2 4 6 
3 | 3 6 9

When	you	are	printing	floating	point	numbers	you	can	control	the	number	of	
digits	that	appear	after	the	decimal	point.	The	format	specifier	%.2f	will	print	
with	exactly	two	digits	after	the	decimal	point	(rounding	automatically).

	 System.out.printf(“%.2f\n”, 2.0/3.0); // prints: 0.67

Also,	if	there	is	a	number	immediately	after	the	%,	then	the	value	that	is	
printed	will	use	that	many	spaces	(or	more	if	needed).	That	means	that	the	
format	specifier	%6.2f	will	print	a	floating	point	number	with	two	digits	past	
the	decimal	and	will	use	six	spaces	to	do	it.

	 System.out.printf(“%6.2f\n”, 2.0/3.0); // prints: “ 0.67”

Finally,	if	you	place	a	negative	number	immediately	after	the	%,	it	does	the	
same	thing	but	places	the	extra	spaces	at	the	end	rather	than	the	beginning.

	 System.out.printf(“%-6.2f\n”, 2.0/3.0); // prints: “0.67 ”

4) Write	a	small	program	that	outputs	the	following	division-table	using	five	
printf	statements,	one	per	line.	For	the	nine	results	in	the	table,	use	%f	for	
each,	with	appropriate	formatting	modifiers	between	the	%	and	f.	In	your	
printf’s	expression	list	put	the	appropriate	divisions	(eg,	instead	of	1.50	
put	3.0/2.0).	Also,	for	the	nine	results,	do	not	place	any	spaces	in	your	
string	to	do	the	spacing	between	numbers,	instead	use	the	format	
modifiers	to	control	the	printing	width. 
 
 1 2 3 

1 | 1.00 2.00 3.00 
2 | 0.50 1.00 1.50 
3 | 0.33 0.67 1.00

