

PAL Worksheet Review of Built-in Java Objects CSC20

Topic: Character Class Ref: CSC15 PAL WS Text Manipulation

A Java library is just a collection of classes that have been written by somebody
else already. You can use those classes in your code. This lets you expand what
Java can do and rely on code that other people have tested instead of doing
everything yourself. Some of these are automatically imported (like String,
Integer, Character, Math, Exception) and you can include others like Random,
Scanner, File, Exception using the import directive.

Character Class

The Character class wraps a value of the primitive type char in an object. An
object of class Character contains a single field whose type is char. You can also
read about the wrapper Integer class in the book.

The Character class provides a large number of static methods for determining
a character's category (lowercase letter, digit, etc.) and for converting
characters from uppercase to lowercase and vice versa.

There is a section about type char in chapter 4 of the textbook. A list of useful
Character class methods is given in Appendix A of your book.

One of the most important ideas is that the values of type char have
corresponding integer values. There is a character with value 0, a character
with value 1, a character with value 2 and so on. You can compare different
values of type char using less-than and greater-than tests, as in:

if (ch >= 'a') { .. }
All of the lowercase letters appear grouped together in type char ('a' is followed
by 'b' followed by 'c', and so on) and all of the uppercase letters appear grouped
together in type char ('A' followed by 'B' followed by 'C' and so on). Because of
this, you can compute a letter’s displacement (or distance) from the letter 'a'
with an expression like the following (this expression assumes the variable
letter is of type char and stores a lowercase letter):

letter - 'a'

Do you think this number can be used to index an array?

Going in the other direction, if you know a character’s integer equivalent, you
can cast the result to char to get the character. For example, suppose that you

want to get the letter that is 8 away from 'a'. You could say:

char result = (char) ('a' + 8);

This assigns the variable result the value 'i'.
As in these examples, you should write your code in terms of displacement
from a fixed letter like 'a' rather than including the specific integer value of a
character like 'a'.

You probably want to look at the String and Character classes for other useful
methods (e.g., there is a toLowerCase method in each).

The String methods are mostly instance methods because Strings are objects.
The Character methods are all static because char is a primitive type. For
example, assuming you have a variable called s that is a String, you can turn it
to lowercase by saying:

s = s.toLowerCase();

This is a call on an instance method where you put the name of the object first.
But char values are not objects and the toLowerCase method in the Character
class is a static method. So assuming you have a variable called ch that is of
type char, you'd turn it to lowercase by saying:

ch = Character.toLowerCase(ch);

Ex. 1. Write a method that takes a character ch as a parameter and returns the integer value
of ch. What is the integer equivalent of the letter ‘a’? Is it different from ‘A’?

Ex.2. Using the above information, write a method that inputs a character returns the
distance from ‘a’. First determine if the incoming character is part of the alphabet. If it’s not
then returns a signal value like -1. Convert the incoming character to lowercase before
calculating distance

Ex.3. String to array of chars

Ex.4. Write a program that reads in a string called word and reports the letter frequency. So
if you input “aBAca” it should return 311 since there were 3 a’s 1 b and 1 c. You would need
to create an array of integers and set the “distance” from ‘a’ information to calculate the
index for each corresponding letter of the alphabet. This array can be used to calculate the
number of times a letter occurs. Do you see how the frequency of ‘a’ can be stored in
position 0 of this array?

Use these methods for converting a char array to string and vice versa

 char[] charArray = str.toCharArray(); // create a char Array from a string

 String s = String.valueOf(charArray); // convert to string

