
PAL	Worksheet Text	manipulation CSC	15

Text	manipulation	is	very	very	common	in	programming.	Luckily,	Java	has	a	lot	
of	built-in	library	functions	that	can	do	a	lot	of	the	work	for	you.


If	s	is	a	String,	the	most	common	methods	built	into	s	are:


s.length()	-	returns	the	number	of	characters	in	s.

s.charAt(i)	-	returns	the	character	at	index	i	of	s	(indices	begin	at	0).

s.substring(i,j)	-	returns	the	substring	of	s	with	indices	from	i	to	j-1.

s.substring(i)	-	returns	the	substring	of	s	with	indices	from	i	to	the	end	of	s.

s.equals(t)	-	returns	true	if	Strings	s	and	t	are	the	same.	(Don't	use	==)


There	are	many	more.	Find	the	Javadoc	for	the	String	class	and	have	a	quick	
look.


1) Let's	say	s	is	a	String.	Write	a	few	lines	of	code	that	print	the	characters	of	
s,	one	per	line,	using	charAt. 

2) Let's	say	s	is	a	String.	Write	a	few	lines	of	code	that	print	the	characters	of	
s,	one	per	line,	using	substring. 

3) Write	a	small	program	that	prompts	the	user	for	a	word	and	then	prints	all	
the	ways	you	can	break	the	word	into	two	non-empty	strings	with	a	"|"	
character	separating	the	two	parts.	For	example: 
 
Enter	a	word:	abcd 
a|bcd 
ab|cd 
abc|d 
 
Before	coding,	design	your	algorithm	first	using	pseudocode.	Using	paper	
and	pencil	and	examples	can	be	the	best	way	to	figure	out	important	
details	such	as	the	indices	to	use	for	your	substrings.	Ask	yourself	
questions	like	"how	many	times	should	I	loop?"	and	"what	sequence	of	
loop	indexes	i	do	I	want?". 

A	String	s	is	a	rotation	of	another	String	t	if	you	can	move	some	characters	
from	the	front	of	t	to	the	back	of	t	and	the	result	matches	s.	For	example,	cdab	
is	a	rotation	of	abcd	because	if	you	remove	the	ab	from	abcd	and	move	it	to	the	
back	you	get	cdab.




PAL	Worksheet Text	manipulation CSC	15

For	each	of	the	following	problems	you	can	allow	or	disallow	calling	a	String	a	
rotation	of	itself.	Some	of	them	are	easier	if	you	do	count	it.


4) Write	a	small	program	that	prompts	the	user	for	two	words	and	then	
prints	either	"Rotation!"	or	"No	rotation!"	depending	on	whether	they	are	
rotations	of	each	other.	Before	coding,	design	your	algorithm	first	using	
pseudocode. 

5) How	can	you	convince	yourself	that	the	program	you	just	wrote	works	
correctly?	Testing. 
 
In	programming,	having	a	test	plan	is	very	important.	You	should	consider	
a	selection	of	inputs	that	convince	you	that	it	works	well.	Try	normal	
inputs,	exotic	inputs,	tiny	inputs,	etc.	Both	ones	that	should	succeed	and	
ones	that	should	fail.	You	don't	need	dozens	of	test	cases,	but	six	or	eight	
well-chosen	ones	should	suffice. 
 
Discuss	with	others	what	would	make	a	good	set	of	test	inputs	for	your	
program.	 

6) Another	(more	efficient)	way	to	check	whether	s	is	a	rotation	of	t	is	to	
check	whether	s	and	t	are	the	same	length	AND	s	is	a	substring	of	t+t.	For	
example	we	see	that	cdab	is	a	rotation	of	abcd	because	both	are	length	4	
and	cdab	is	a	substring	of	abcdabcd.	Redo	Problem	4	using	this	logic	and	
looping	through	all	the	correct-length	substrings	of	t+t,	if	s	and	t	are	the	
same	length.	Before	coding,	design	your	algorithm	first	using	pseudocode. 

7) Another	(even	more	efficient)	way	to	check	whether	s	is	a	rotation	of	t	is	to	
follow	the	logic	of	Problem	6,	but	having	Java	do	the	looping	for	you.	Read	
about	the	indexOf	method	in	the	String	class	Javadoc	and	use	it	instead	of	
the	looping	you	did	in	your	Problem	6	solution.	Before	coding,	design	your	
algorithm	first	using	pseudocode.


