

PAL Worksheet Arrays Advanced CSC20

Topics: Arrays of Objects - Parallel Arrays - Two dimensional Arrays

Ref: CSC 15 PAL WS Array Basics, Call by Reference, Public Fields, For Loops

Suppose you have two arrays: One of them called friendsNames, holds the
names of ten of your friends. The other called phoneNumbers, holds their phone
numbers. Given a name, to be able to lookup a phone number, it would be a good
idea to make sure that these two arrays have information that corresponds at
each index much like columns of an excel spreadsheet. So, if “Diego” is at index
0 of the array friendsNames, it would make sense to store his phone number at
phoneNumbers[0].

Ex.1. Write a small program that reads in names and phone numbers from a text file and
stores them into parallel arrays of size 10. Your file may contain either less or more than 10
pieces of data. Each pair of data is on a new line in the file and the name and phone number
are separated by a space e.g. Diego 919-777-3455. Hint: use a counter to count the actual
number of data pairs that were read into the arrays. What would work better a for loop or a
condition based while loop?

Ex.2. Since an array index can be an expression, lets use a random number to give you a
random friends name and phone number. Update Ex.1. with a method that does that.

Ex.3. Suppose we would like to store friend’s birthdays along with their names and phone
numbers. Adding another array seems cumbersome. Create a ContactInfo class that contains
name, phone number and birthday (all string type). Create a constructor for this class that
takes in name, phone number and birthday as parameter. Modify your programs in Ex1 and
2 to create an array of ContactInfo objects. Hint:

1. Declare ContactInfo [] friendInfo = new ContactInfo[10];

2. Read in the data for one friend from a file

3. Create an object that stores a friends information using the constructor

4. ContactInfo friend = new ContactInfo(name, phoneNumber,birthday);

5. Assign this friend to an element of the array starting with element 0. Repeat as
required.

Display the entire friend’s directory. What do you think would happen if you tried to print
the contents of the ContactInfo array before doing step 1 above? Try and see what happens.

Sometimes we need to work with a table of information again like an excel
spreadsheet with many rows and many columns. Java allows us to create

multidimensional arrays. The number of rows in a table need not be the same
as the number of colums (so we can have a square or rectangular table. We will
not work with “jagged arrays” where the number of columns can be different
for each row). Suppose we have a 2x 3 matrix called simple that looks like this

[1 2 3]

[4 5 6]

If r stands for number of rows and c for number of columns, then r==2 and c==3.
In Ex.3 we were able to use a single for loop to traverse the single dimension
array. With 2 dimensions, we need two loops where the outer loop traverses
the rows and the inner loops traverses the columns for a particular row. Read
the PAL worksheet on For loops if you need to review nested loops.

Ex 4. Write a method that takes in a two-dimensional array (like simple) and returns the sum
of all the numbers in that array.

Hint: Often we need to determine the values of r and c to be able to traverse them. Try
simple.length to get the number of rows and simple[0].length to get the number of columns.
Explain how this works.

Copying complete or partial arrays, sorting and displaying can be tedious since
it involves Iterating over each element. The Arrays utility offers methods to
create, compare, sort, search, display, and transform one dimensional arrays.
E.g. for Arrays.sort(friendsNames). You can read more about this in Chapter 7.

Ex5. Practice using Arrays.toString, Arrays.copyOf, Arrays.sort etc on a one dimensional array

Ex6. Copy simple into an array called anotherSimple using Arrays.copyOf. Display the arrays
using Arrays.toString. Did it work? Why or why not? Look up how to “deepCopy” a two
dimensional array. Why would regular copy not work?

