
PAL	Worksheet Call	By	Reference CSC	15

When	you	call	a	method	and	the	method	has	an	array	as	a	parameter,	the	array	
you	pass	is	not	copied.	In	fact,	all	that	is	copied	is	the	address	in	memory	of	
where	the	array	starts.	This	way	of	passing	arrays	is	named"call-by-reference"	
because	just	a	reference	is	passed.	It	is	more	efHicient	than	would	be	passing	a	
copy	of	the	array,	especially	for	large	arrays.	

The	big	consequence	of	this	is	that	a	method	can	manipulate	the	passed-in	
array.	

int x = 0;
foo(x);
// x still 0 no matter what foo does.

int[] arr = new int[5]; // new always zeros its creation
bar(arr);
// arr could be changed by bar

1) Write	a	static	method	called	incrementAll	that	takes	an	integer	array	as	a	
parameter	and	increases	each	of	its	elements	by	1.	
	
public static void incrementAll(int[] arr) {	

Sometime	this	behavior	is	desired.	For	example	Arrays.sort(arr)	rearranges	
the	elements	in	arr	in	increasing	order	and	that's	exactly	the	reason	it	exists.	
But	unless	a	method	is	documented	as	changing	the	contents	of	an	array	that's	
passed-in,	it's	considered	bad	practice	for	it	to	do	so.	

2) Write	a	static	method	called	median	that	takes	an	array	of	doubles	as	a	
parameter	and	returns	the	median	element.	Do	not	alter	the	array	that's	
been	passed	in.	Investigate	the	method	copyOf	in	the	Arrays	class	and	use	
it.	

3) Write	a	static	method	called	reverse	that	takes	an	array	of	ints	as	a	
parameter	and	returns	a	new	array	that	is	the	same	as	the	original	array	
but	in	reverse	order.	Do	not	alter	the	array	that's	been	passed	in.	

4) Write	a	static	method	called	reverseInPlace	that	takes	an	array	of	ints	as	a	
parameter	and	reverses	its	order.	Do	not	create	an	extra	array.	

If	you	have	not	already,	and	if	time	permits,	implement	and	test	some	of	your	
solutions	to	the	problems	above.

