

- 1. Given the S-N curve, answer the following:
 - a. Is the material brass, aluminum or steel?
 - b. If the intended part will operate at a frequency of 66 Hz and 350 MPa, how many days until it fails? (Hint: Hz are cycles/second.)
- 2. Define Creep.
- 3. Sketch three creep strain curves at increasing temperature with Creep strain on the Y axis and time on the X axis. The sketch/plot should make it clear how creep strain rate changes with temperature.
- 4. Show how increasing applied stress looks in a similar plot.
- 5. (Challenging problem) Steady-state creep data taken for an iron at a stress level of 135 MPa are given here:

$\dot{\epsilon}_s$ (h ⁻¹)	T (K)
6.5 x	1090
10 ⁻⁴	
9 x 10 ⁻²	1210

If it is known that the value of the stress exponent *n* for this alloy is 8.9, compute the steadystate creep rate at 1310 K and a stress level of 80 MPa.