1. Estimate the equilibrium number of vacancies in $1 \mathrm{~m}^{3}$ of Cu at $1200^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\text { Givin: } \rho=8.4 \mathrm{~g} / \mathrm{cm}^{3} & \mathrm{~A}_{\mathrm{Cu}}=63.5 \mathrm{~g} / \mathrm{mol} \\
\mathrm{Q}_{\mathrm{v}}=0.9 \mathrm{eV} / \text { atom } & \mathrm{N}_{\mathrm{a}}=6.02 \times 10^{23} \text { atoms } / \mathrm{mol}
\end{array}
$$

2. Determine the ASTM Grain Size number based on ASTM E112A given there are 4 grains per square inch in a micrograph at 100X. (Hint: Use your lab resources.)
3. Hall-Petch Calculation - Given the following plot and data, use the Hall-Petch method to calculate the YS of commercially pure Al with a grain size of 0.1 Microns.

4. Determine the V_{f} of second phase particles in this micrograph.

