Kinematics - Particle Linear Motion - Position and Velocity
Reminders: Velocity is the rate of change of \qquad with respect to \qquad . A particle's speed is the \qquad of that particle's velocity.
Notation: For particles moving along an axis.
$\checkmark \quad \mathrm{O}=$ origin, $\mathrm{s}=$ position along axis, $\mathrm{t}=$ \qquad
\checkmark For a trip or time interval, $\Delta s=$ particle displacement.
\checkmark If motion is horizontal (or predominantly so), "x" may be used for position.
\checkmark If motion is vertical, " y " may be used for position.

1. In each case, i. complete the chart ii. draw an axis, indicate the origin and - for each designated time - show the particle at its associated position. ii. Graph position vs. time and velocity vs. time; "stack" the graphs iii. Find the total displacement
a) Particle velocity is a constant -5 feet/sec

\boldsymbol{t} (secs)	0	1	2	2.4	4.8	6
\boldsymbol{x} (ft)	24					

b) Particle velocity is a constant +4 meters $/ \sec$ for $0 \leq t \leq 3$ seconds, a constant -2.5 meter $/$ sec for $3<t \leq 9$ seconds.

\boldsymbol{t} (secs)	0	1	3	4	7	9
$\boldsymbol{x}(\boldsymbol{m})$		0				

c) Particle moves downward. Make up the positive direction. Make $y=0$ ground level. Particle moves with terminal velocity -64 feet/sec.

\boldsymbol{t} (secs)	0	1	2.5	4	5
\boldsymbol{y} (ft)	320				

2. Reminder: For an interval, average velocity $=v_{\mathrm{av}}=$ displacement over time interval $=\Delta \mathrm{s} / \Delta \mathrm{t}$). For each successive time interval, find the average velocity. Example:

$\boldsymbol{t}(\boldsymbol{s e c s})$	0	1	2	3	5
$\boldsymbol{x}(\boldsymbol{f t})$	0	2	8	18	50

Fort $=0$ to $1 \mathrm{~s}, \mathrm{vav}=+2 \mathrm{ft} / \mathrm{se}$	
	For

a)

\boldsymbol{t} (secs)	0	1	2	3	4
$\boldsymbol{y}(\boldsymbol{f t})$	90	110	90	50	0

b)

$\boldsymbol{t}(\boldsymbol{s e c s})$	0	0.8	0.81	0.82	1
$\boldsymbol{s}(\boldsymbol{m})$	-10	0	1	1	-6

3. (Reminder: Since instantaneous velocity is the rate of change of position, $\mathrm{v}(\mathrm{t})$ is equal to (circle one)

- the derivative
- the integral of the position function $s(t)$.

4. In each case i. determine the particle initial and final positions and at least 2 intermediate positions ii. draw an axis, indicate the origin and show the particle at its initial and final positions at least 2 intermediate positions iii. find the velocity function $v(t)$ iv. at each drawn position, indicate the particle's velocity (magnitude and direction) iv. Graph position vs. time and velocity vs. time; "stack" the graphs.
a) $x(t)=-4+20 * t-2 * t^{2}$ meters for $0 \leq t \leq 5$ seconds
b) $y(t)=192+64 * t-16 * t^{2}$ feet for $0 \leq t \leq 6$ seconds
5. Basic differentiation and chain rule practice. In each case, give the derivative of the given function. Don't forget the chain rule! Example: $\mathrm{x}(\mathrm{t})=\mathrm{u}^{4}$. Answer: $\mathrm{x}^{\prime}(\mathrm{t})=\mathrm{v}(\mathrm{t})=4^{*} \mathrm{u}^{3} * \mathrm{du} / \mathrm{dt}$.
a) $x(t)=(3 t)^{3}$
b) $y(t)=4 \sin t+8$
c) $x(t)=3 \cos \left(\pi^{*} t\right)$
d) $x(t)=16 \sin (u)+5$
e) $x(t)=5^{*} e^{t}$
f) $x(t)=20-20 * e^{-2 t}$
g) $y(t)=\ln t$
h) $s(t)=5 * \ln \left(t^{2}\right)$
6. In each case i. determine the particle initial position and at least 3 additional positions ii. draw an axis, indicate the origin and show the particle at its initial position and several other positions iii. find the velocity function $v(t)$ iv. at each drawn position, indicate the particle's velocity (magnitude and direction) v. Graph position vs. time and velocity vs. time; "stack" the graphs.
a) $x(t)=220-220 * e^{-0.2 t}$ feet, $t \geq 0$ seconds. (Scenario: Vehicle cruising to a stop due to laminar air resistance)
b) $y(t)=-128+64 * t+128 * e^{-0.5 t}$ feet, $t \geq 0$ seconds. Make down the positive direction. (Scenario: Free-fall with laminar air resistance)
7. (Reminder) Since instantaneous velocity is the rate of change of position, $\mathrm{s}(\mathrm{t})$ is equal to (circle one)

$$
\bigcirc \text { the derivative } \circ \text { the integral }
$$

of the velocity function $v(t)$.
8. In each case, write the position function.
a) $v(t)=2 t+4$ meters $/ \mathrm{sec}$; at time $t=0$, the particle is at $x=-5$ meters.
b) $v(t)=5 \cos (2.5 t)$ feet /second; at time $t=0$ seconds, the particle is at $y=10$ feet.

