Thevenin Equivalent Circuits: Given a linear network, it is always possible to replace the network with a voltage source in series with a resistor.

1) Find the Thevenin equivalent with respect to terminals a, b in the circuit shown below by finding the following:
a) Find the open circuit voltage, $V_{o c}$, with respect to the terminals a, b.
b) Find the short circuit current, $i_{s c}$, with respect to the terminals a, b.
c) Calculate the Thevenin resistance, $R_{T h}$, and sketch the Thevenin equivalent circuit with respect to the terminals a, b.

2) Find the Thevenin equivalent with respect to terminals a, b in the circuit shown below. Sketch the Thevenin equivalent circuit showing all the relevant calculated values.

Norton Equivalent Circuits: Given a linear network, it is always possible to replace the network with a current source in parallel with a resistor.

1) Find the Norton equivalent with respect to terminals a, b in the circuit shown below by finding the following:
a) Find the open circuit voltage, $V_{o c}$, with respect to the terminals a, b.
b) Find the short circuit current, $i_{s c}$, with respect to the terminals a, b.
c) Calculate the Thevenin resistance, $R_{T h}$, and sketch the Norton equivalent circuit with respect to the terminals a, b.

2) Find the Norton equivalent with respect to terminals a, b in the circuit shown below. Sketch the Norton equivalent circuit showing all the relevant calculated values.

Special Cases: Sometimes finding the Thevenin or Norton equivalent circuits is not as straight forward. Here are some interesting and challenging cases where finding the equivalents is possible yet requires a bit more insight and thought.

1) Find the Thevenin equivalent with respect to terminals a, b.

2) Find the Norton equivalent with respect to terminals a, b.

