

PAL Worksheet Sets CSC20

Topics: Collection Interface, Set Interface
Ref: CSC20 PAL WS Inheritance
 CSC20 PAL Polymorphism and Interfaces

The Collection Interface

A Collection is an object that stores a group of objects called elements.
Collections use data structures to store and manage data. They are categorized
by the types of elements that they store, the operations they allow you to
perform on these elements, and the speed and efficiency of these operations.
Some examples of collections are List, Set, Map, Stack, Queue etc.

Java provides a large and useful group of collections that allow store, access,
search, sort and manipulate data in a variety of ways. Together, these
collections and classes are known as the Java Collections Framework. This
frame work is contained largely in java.util.*

Sets

One of the limitations with linear data structures like lists is that searching for
an element takes a long time – you have to look over all preceding elements
before locating one. They can also store duplicate elements, which is not
desirable for certain applications.

The Set Interface in Java is a Collection and is implemented as either a HashSet
or a TreeSet. It uses data structures which are quick to search and do not store
any duplicates, just was we would expect a mathematical set to do. Since Set
inherits from the Collection interface, it’s implementations are bound to
implement all the methods of the Collection interface. You can see a list of
some useful Collection methods in Chapter 11 of the BJP textbook. Some
examples are add, remove, size etc.

The implementation of Set that we will use is HashSet. It is based on a hash
table structure which makes searching, adding, and removing all very quick
operations.

For example, it would be more appropriate to use a Set for a social network
application instead of a LinkedList, because every user mandates their own
unique profile. Duplicates of any profile would be misleading and chaotic.

We can declare a Set by its HashSet implementation and add items to it as
such:

Set<Integer> integerSet = new HashSet<>();

integerSet.add(2);

integerSet.add(4);

integerSet.add(2); // this duplicate item will not be stored

Ex.1) Write a Java method which takes in an array of integers, (returns
nothing)then uses both a LinkedList and a Set to store unique elements (i.e.
without duplication). You will see that it is simpler with the Set than the
LinkedList.

Ex.2) Write a Java method which uses a Set to determine the number of unique
email addresses stored in a database. Email addresses should be provided as
an array of Strings. It returns an integer representing the number of unique
email addresses.

Sets also provide set operations with built-in methods like: setA.addAll(setB)
for set union, setA.retainAll(setB) for set intersection, and
setA.removeAll(setB) for set difference.

For example, here is how to perform set union, which provides the set of all
elements which are in set A, set B, or both. Note there will be no duplicates
stored.

HashSet<Integer> setA = new HashSet<>(Arrays.asList(2,4,6,8));

HashSet<Integer> setB = new HashSet<>(Arrays.asList(6,8,10,12));

setA.addAll(setB); // setA is now [2, 4, 6, 8, 10, 12]

Q3) We have two databases of email addresses and want to determine which
addresses are common to both. Write a method which takes in two String
arrays as input and finds and prints their common elements, using HashSet. Its
return type is void.

