
PAL Worksheet Recursion CSC 20

Recursion is a powerful technique that is used in mathematics and computer
science to solve a problem by repeatedly breaking it down into smaller
instances of the same problem. The sign of a recursive function is that it calls
itself. A couple of famous examples are: the Fibonacci sequence and Tower of
Hanoi problem. But there are many everyday problems that lend themselves
to recursive solutions.

Imagine we wanted to, given an input integer like 10, sum up all the numbers
from 1 until the input, i.e. sum up [1,…,10].

We know this is solved by doing 1 + 2 + 3 + … + 10, so we can first solve it
iteratively using a for loop:

public static int sumUp(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

We note that the main operation here is the addition of a set of numbers. We
can imagine the problem by visualizing a stack of numbers, where 10 is at the
top, and 1 is at the bottom. It’s like we are adding up all the numbers in the
stack (the ‘stack’ here does not refer to the Java Collection, just a vertical stack
of numbers).

But how do we get from the item at the top (i.e. 10), to each item underneath
it? That’s easy – we subtract 1 from each layer to get the layer underneath it.
So we start with 10 at the top, then subtract 1 to get 9, then subtract 1 again to
get 8, etc.

This subtraction by 1 is a repetitive operation, so we can have the function call
itself:

public static int sumUp(int n) {

return n + sumUp(n - 1); // Recursive call or smaller case

}

PAL Worksheet Recursion CSC 20

So, this recursive function is doing: 10 + (9 + (8 + (7 + …))). The solution has
two parts: At the beginning the first part adds 10, and then calls ‘itself’ ie
sumUp on 10-1 (the smaller case) ie 9. So the call is sumUp(9). sumUp(9) will
in turn return 9 + sumUp(8). This subsequent call will include 8 + sumUp(7).
These series of successive recursive calls will continue until we decide when
to stop. This last execution is called the base case or exit case.

But the way sumUp() is written right now, it will get to sumUp(1), where it will
just do: 1 + sumUp(0), which will do 0 + sumUp(-1).
In fact, this will keep going infinitely! Eventually we will get 10 + 9 + 8 + … + 0
+ ... -100 + …

We definitely want to halt the function call somewhere in the function body.
So, we create the ‘base case’ which gives the recursive function a condition at
which it can finally stop and return a definite value instead of another
recursive call.

public static int sumUp(int n) {

//base case: return definite value to prevent recursive

call

if (n <= 1) {

return 1;

}

return n + Sum(n - 1); // Recursive call, smaller case

}

Now, sumUp(1) will just return 1, instead of 1 + sumUp(0). Perfect.

Try a similar problem, and visualize the input being broken into multiple
layers, where a certain repetitive operation can break down each layer into the
one underneath. Also think the halt condition for the lowest layer.

To sum up, recursive problems involve repetition, a base case (or exit
case) and a smaller case. (the recursive call to the solve the same
problem, but with a smaller “value” so it is moving a step closer to the
exit case).

PAL Worksheet Recursion CSC 20

Many recursive problems can be solved using iteration, but often the recursive
solution is more elegant – sometimes there is no other way to solve the
problem except by recursion.

Think about the mechanics and efficiency of recursive solutions. Would they
be more or less expensive in terms of resources than their iterative
counterparts?

When solving problems using recursion, it is a good idea to identify the base
case (exit case) and the smaller case as part of the algorithmic problem -
solving process. This will make the code writing easier.

Ex1) Convert the following iterative function countDigits() into a recursive
one.

Note: countDigits() will take an input like 12345, and repeatedly separates the
input into layers. In the loops, n will 1234, then 123, then 12, then 1, then 0.
Each time, it whittles away the modified input. The number of loops required
to remove all the digits, is itself the total number of digits.

What is halting condition for the base case?

public static int countDigits(int n) {

int count = 0;

while (n != 0) {

n = n / 10;

count++;

}

return count;

}

Ex2) Try a similar problem. Write recursive function sumUpDigits(integer n),
which takes in a value like 12345 and returns 1+2+3+4+5=15. Use the
modulus operator to separate each layer, with the layers being 12345, 1234,
123, 12, and 1. Note that 12345 % 10 = 1234, and 1234 % 10 = 123, etc.

Ex3) Here’s another useful one. Write recursive function printEvens(integer n)
to print all the even numbers from n…0. For example, printEvens(15) prints
14, 12, 10, 8, 6, 4, 2, 0.

PAL Worksheet Recursion CSC 20

Again, think about how to get from the input to the layer underneath it, and
also what the halt condition would be (hint: it should stop at the smallest even
number, zero).

Let’s extend our thinking to not only integers, but also strings and characters.
The concept will remain the same – given an input string, figure out which
operation to use to repeatedly break the top string into a slighter smaller
string, while keeping in mind this will typically stop when the string is empty.

Here is a simple example to count the length of a string, or the number of
characters.

public static int strLen(String str) {

if (str.isEmpty()) {

return 0; // base case

}

 // splitting operation takes away first char

char first = str.charAt(0);

String rest = str.substring(1);

 // recursive call with rest of string

 // add 1 for each recursive call

return 1 + strLen(rest);

}

We first identified how to get from the top layer (the input string) to the next
layer down – by splitting the string right after the first character. We then do a
recursive call with the rest of the string, and we keep adding 1 each time we
do this. This counts up the total number of recursive calls.

The key is that number of recursive calls equals the number of times we split
the string, equals the number of elements in the string!

P4) Write a recursive function called reverse(), which takes in an input string
and returns it reversed. For example, if the input is “hello”, the function should
return “olleh”.

Hint: keep splitting the string until you reach the base case of empty string,
then build back from the last character to the first. Think about reaching the
lowest layer, then building back to the top layer.

PAL Worksheet Recursion CSC 20

Ex5) Using similar concepts from Ex4, write a recursive function called
palindrome(), which takes in an input string and returns a boolean to indicate
if it’s palindrome or not. For example, “racecar” would return true, while
“building” would return false.

Hint: think about splitting the string at the ends. Checking a string for being a
palindrome involves checking the first and last character for equivalence, then
the second and second-last, and so on until you reach the middle.

Now let’s try solving some other string problems with recursion.

Ex6) Write a function called findIndex(String str, char target) which takes in a
string and target character, and returns the index of the character in the string.
For example, findIndex(“hello”, “o”) should return 4.

Ex7) Write a recursive function called countOccur(String str, char target)
which counts the number of times a specified character appears in an input
string. For example, countOccur(“hello”, “l”) should return 2.

Hint: One approach is to keep splitting the string until you get to the base case,
where the string is empty. Then, as you return from the lowest layer to the top
layer, check each layer for a character match and increment count if there is a
match.

Ex8) Modify countOccur() to instead count the number of vowels in the input
string. The function will be called countVowels(String str). The vowels are the
set (a, e, i, o, u).

Recursion is a powerful tool that can be used to process recursively defined
data structures. Recall that a ListNode class has a recursive definition. A
ListNode is chained to another ListNode in the LinkedList Class. We can use
recursion to retrieve elements from and to process LinkedList objects. The
base case for the recursion would be the empty list (or null) and the smaller
case is one less than the current size of the list and would be the obtained by
moving “down” the list to the next node.

Redo the LinkedIntList problems in Practice-it Chapter 16 by using
recursion instead of iteration.

PAL Worksheet Recursion CSC 20

