
PAL Worksheet Searching and Sorting CSC20

Topics: Binary Search
Using Iteration and Recursion

Searching

Searching an unsorted array is difficult and often a linear process. It may
require scanning each item of the array, from first to last, to find the desired
item. This is called sequential search, and can be done by via a for or while
loop. However, if the array or database is large, this can take a lot of time.
Since we are usually searching for information most of the time, we would like
searching to be a quick and efficient operation.

But if we were to pass the array through one of our Sorting algorithms, we
could then use an interesting heuristic for searching it efficiently – Binary
Search.

The algorithm for Binary Search is simple:

def binarySearch(array, target){

 min=0

max = len(array)-1

 while(min <= max){

 // find middle index halfway between min and max

 mid = (min + max) / 2

 // check if target found

 if array[mid] == target:

 return mid

 else if target > array[mid]:

 min = mid + 1

 else: //target < array[mid]

 max = mid – 1

 }

}

PAL Worksheet Searching and Sorting CSC20

This has a very simple logic.

1. Take a sorted array.

2. Split it in half, into a ‘lower’ half and ‘upper’ half.

3. Check if the value at halfway mark is the actual target value. If so, found
it! Return the index position of the halfway mark where it was found.

4. If it’s not, check if target value could possibly be in ‘lower’ half or ‘upper
half.

a. If target is less than value at halfway point, it must be in lower
half,

b. If target is greater than value at halfway point, it must be in the
upper half.

5. If the outcome is 4a, then make the current search area the lower half of
the array and disregard the upper half. If the outcome is 4b, then make
the current search area the upper half of the array and disregard the
lower half

6. Repeat until Step 3 finds the target value, or until the array is too small
to split.

7. If the item is not found, return -1.

Let’s practice on an example.

For the following array, let’s write out the mid, min, and max values per each
loop in the binary search algorithm, until the target value of 37 is found.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

11 18 29 37 42 49 51 63 69 72 77 82 88 91

min = 0, max = 13

loop 1) mid = (0+13)/2 = 6. target < mid, so max = mid-1 = 5.

loop 2) mid = (0+5)/2 = 2. target > mid, so min = mid+1 = 3.

PAL Worksheet Searching and Sorting CSC20

loop 3) mid = (3+5)/2 = 4. target < mid, so max = mid-1 = 3.

loop 4) mid = (3+3)/2 = 3. target == mid, so return 3.

Q1) Repeat, this process of writing out min, max, max and return values this
time for the target value of 11, which is the very first item and for an item that
is not in the array e.g. 100.

Recursive Binary Search

Now, what if we wanted to convert Binary Search to its recursive version?

Well, the repetitive operation is splitting the array in half, and comparing
target to the halfway value. The base case is that either the item is found at the
midway mark or the current segment of the array is too small to be further
broken into half. The smaller case is focusing the search on either the upper or
lower half of the array.

Here is the pseudocode for the recursive version of Binary Search.

def binarySearch(array, target, min, max){

 // base case

if min > max:

 return -1

 // recursive case

 mid = (min + max) / 2

 // check if target found

 if array[mid] == target:

 return mid

 // continue on upper half

 else if target > array[mid]:

 binarySearchRecursive(array,target, min=mid+1, max)

 // continue on lower half

 else: //target < array[mid]

 binarySearchRecursive(array,target,min, max=mid-1)

}

Q 2) Convert this pseudocode into Java code

