
PAL Worksheet List Nodes - Building Blocks of Linked Lists CSC 20

Topics: ListNodes, LinkedLists, Introduction to Recursive Data Structures
Ref: CSC20 PAL WS LinkedLists

The ListNode Class

The building block of a linked list is a ‘node’ object of the ListNode class. It has
two fields, one to hold data and the other (called next) to hold the address of
another ListNode object. This structure makes it easy to chain ListNodes into a
Linked List

public class ListNode {

 public int data; //data field

 public ListNode next; // points to the next ListNode

 public ListNode() { // default constructor

 data=0;

 next=null;

 // this(0, null); another way to do the above.

 }

}

Here is how we create an empty ListNode object:

ListNode list = new ListNode();

This node’s data field is default 0, and the ‘next’ variable is set to default null.
We then update the data field to contain a specific value:

list.data = 3;

Let’s create a second node to add to the existing list:

ListNode node2 = new ListNode();

node2.data = 7;

Here is how we connect to the second node, using the ‘next’ variable to store
the address of the new node. This gives us a list of two ‘linked’ nodes:

list.next = node2;

Ex.1) Create a linked list of three connected nodes, with the following data
values: [5, 7, 9]. Start with an empty node object.

PAL Worksheet List Nodes - Building Blocks of Linked Lists CSC 20

After creating each additional node, link it with the previous node as shown
above.

Now let’s create a linked list without having to create each node individually.
We will do this with modified constructors belonging to the ListNode class.

public class ListNode {

 public int data;

 public ListNode next;

 // default constructor

 public ListNode() {

 this(0, null);

 }

 // modified constructor1 for data only

 public ListNode(int data) {

 this(data, null);

 }

 // modified constructor2 for data and next node

 public ListNode(int data, ListNode next) {

 this.data = data;

 this.next = next;

}

With the first modified constructor, we can specify the node’s data value:

ListNode list = new ListNode(3);

With the second modified constructor, we can specify the node’s data and
‘next’ variables:

ListNode list = new ListNode(3, null);

We can also create an additional node through the ‘next’ parameter. The
additional node here utilizes the modified constructor1.

ListNode list = new ListNode(3, new ListNode(7));

Ex 2) Use modified constructor1 to re-create the linked list from Problem 1.

PAL Worksheet List Nodes - Building Blocks of Linked Lists CSC 20

Ex 3) Redo the problem using only modified constructor2.

One way of accessing and manipulating nodes is to use the next pointer to
traverse. BJP Chapter 16 has several examples on how to search, add and
remove list nodes. For example, given a list
list: [5] → [7] → [9] → [3],

Accessing the node 9 can be done as list.next.next.data.
Deleting node 7 can be done as list.next=list.next.next.
Deleting node 3 can be done as list.next.next.next=null.
Inserting a node 8 between 7 and 9 can be done as

ListNode eight = new ListNode(8,list.next.next)
// create a ListNode with data =8 and next pointing to 9

List.next.next=eight; // connect 7 to 8

As you can see, managing multiple “next” hops can be confusing and error
prone.

Linked lists may contain hundreds or thousands of connected nodes. We need
a method to traverse a list, using a temporary variable (i.e. ‘current’) which
points to specific nodes and can be moved.

In the following for-loop, we set a temporary variable called current pointing
to the first list node. Then we re-position it to the following node in each
iteration. The for-loop halts when current has moved past the last list node
and has taken the value ‘null’.

for(ListNode current = list; current != null; current =

current.next) {

}

With such a for-loop, we can: count the number of nodes in the list, search the
list for a specific data value, count the number of nodes with a specific value,
check if the linked list is sorted, etc.

Ex 4) Using the for-loop above, write code to count the number of nodes in the
given linked list. Use a ‘count’ variable which is incremented by one for each
loop iteration. Be sure to handle the case if the linked list is empty.

PAL Worksheet List Nodes - Building Blocks of Linked Lists CSC 20

list: [5] → [7] → [9] → [3]

Ex 5) Using the for-loop above, write code to find this linked list’s maximum
data value. Be sure to check if the linked list is empty.

list: [5] → [7] → [9] → [3]

6) Write code to find if the linked list is sorted in ascending order. Hint: you
will need to compare two successive nodes, ‘current’ and ‘current.next’. Modify
the for-loop condition to accommodate for this.

list: [5] → [7] → [9] → [3]

Inserting a new node into a linked list is simple if we need to place the node at
either the front or end position. For example, here is to insert a node at the
front of a list:

new_node = new ListNode(2);

new_node.next = list; // new node attaches to front of list

list = new_node; // list now starts at the new node

Ex.7) Write code to insert a new node at the end of a linked list. You will need
to iterate to the end of the list first, using the for-loop method provided.

Inserting into the middle of the list, however, requires two pointer re-
assignments. In the linked

list [5] → [7] → [9] → [3], if we want to insert new node [2] between [9] and [3],
we must re-assign [9]’s ‘next’ pointer to store [2], and [2]’s ‘next’ pointer to
store [3]:

new_node = new ListNode(2);

for(ListNode current = list; current.next != null; current =

current.next) {

 if current.data == 9:

 ListNode temp = current.next; // store location of [3]

PAL Worksheet List Nodes - Building Blocks of Linked Lists CSC 20

current.next = new_node; // attach [9] to [2]

new_node.next = temp; // attach [2] to [3]

}

Ex.8) In the following sorted linked list, insert the following new nodes (or
sub-lists) such that the

list remains sorted in ascending order.

list: [2] → [5] → [8] → [12]

8a) Insert [1]

8b) Insert [3]

8c) Insert [7]

8d) Insert sub-list [10] → [11]

Deleting a node from a linked list requires re-assignment of node pointers as
well. To delete [9] from the linked list [5] → [7] → [9] → [3], we will re-assign
[7]’s next pointer to bypass [9] and store [3]. Java’s garbage collection utility
will erase the node [9], which is still pointing to [3].

for(ListNode current = list; current.next != null; current =

current.next) {

 if current.data == 7:

 current.next = current.next.next; //connect [7] to [3]

}

Ex. 9) Write code to remove all nodes with value less than 5 from list [8] →
[4] → [6] → [2] → [9]. Do so without specifically halting the list iteration at
specific nodes.

Additionally, do Practice-it SelfCheck exercises 16.9-16.14

PAL Worksheet List Nodes - Building Blocks of Linked Lists CSC 20

The LinkedIntList Class

The LinkedIntList Class (in BJP Chapter 16) is a class that can be used to create
a LinkedIntList object that can be used to store a list of integers. Each element
of this list is a ListNode object that contains an integer in its data field and an
address of the next ListNode in the next field.

A LinkedIntList object needs only to have the address of the front or the first
node in the list and this can be used to traverse and manage the list. Methods
for this LinkedIntList object are written to offer an api to do search and
retrieve operations, and perform other updates to the linked list.
Refer to Practice-it Exercises for Chapter 16.

public class LinkedIntList {

 private ListNode front; // node holding first value in

list (null if empty)

 private String name = "front"; // string to print for front

of list

 // Constructs an empty list.

 public LinkedIntList() {

 front = null;

 }

Recursion:

The recursive definition of List Node Objects offers the possibility of writing
recursive solutions for LinkedList methods. Recursion will be covered in
detail in another worksheet

