1. Write out and describe the similarities and differences between the equations for deformation in axial members and angle of twist for torsional members.
2. A solid steel shaft has a diameter of 5 inches and is 3 feet long. The shaft is fixed at one end and free at the other. A counter-clockwise torque of 15 k -in is applied at the free end. If a second torque is applied at the midpoint of the shaft of 25 k - in . Determine the angle of twist at the free end.
3. A series of four gears are mounted on a 5 inch diameter steel shaft that is 8 feet long. Gear A is at 0 ft , Gear B at 2 ft , Gear C at 4 ft , and Gear D at 8 ft along the length. The torque on Gears A and C is $20 \mathrm{k}-\mathrm{ft}$ clockwise. The torque on Gear B is $10 \mathrm{k}-\mathrm{ft}$ counterclockwise and Gear D is 30 k -ft counterclockwise.
a. Determine the angle of twist of gear D relative to A .
b. Determine the angle of twist of gear C relative to A.
c. Determine the angle of twist of gear C relative to B.
4. A motor delivers 500 hp to a tubular shaft with an outer diameter of 2 in . If the shaft is rotating at $200 \mathrm{rad} / \mathrm{s}$, determine the required inner diameter if the allowable shear stress is 8 ksi. What is the angle of twist of the shaft when the engine is operating?
