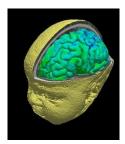
Stronger Together: The Neuroscience of Early Brain **Development & Policy Implications**

> Martha S. Burns, Ph.D October 24, 2025 Martyburns7668@gmail.com

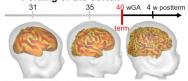
Learning Intentions: participants will be able to

1. Describe early brain maturation and timing of critical periods of healthy brain development


2.Describe the importance of neurogenesis and neuroplasticity for learning and communication

3.Describe the importance of play & experience to prevent learning and behavioral issues in later childhood and adolescence

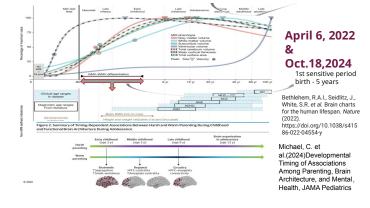
4. Summarize the brain science of preparation and prevention


Neurogenesis and Neuroplasticity:

The Human Brain is an experience-dependent organ

The Infancy of the Human Brain - Pre-term to birth

Folding of the cortex


G. Dehaene-Lambertz^{1,4*} and E.S. Spelke²
*Cognitive Neuromaging Unit. CSA DSV/IZBM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 9191 Gill'vette, France
*Department of Psychology, Hannard University, Cambridge, MA 02138, USA
*Comespondence: gilosand-debaere/deca.81
**Linguistics.doi.org/ig/10.1016/j.jearoru.2015.09.0269

Brain Development after birth

- Proliferation and neurogenesis
- Pruning
- Network building

Neurogenesis and Neuroplasticity

- Neurogenesis: Creation on New Neurons: Neurogenesis is the process by which new neurons are formed in the brain.
- Occurs Throughout Life: While most active during prenatal development, neurogenesis continues in specific brain regions during adulthood.
- Plasticity and Adaptation: Neurogenesis supports neuroplasticity, allowing the brain to adapt to new experiences and build skills based on those experiences

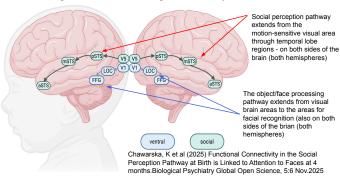
Developing Human Connectome Project (dHCP) www.developingconnectome.org

Led by King's College London, Imperial College London and Oxford University - goal is to make major scientific progress by creating the first 4-dimensional connectome of early life - from 20-44 weeks post-conception age,

Linking together open-source imaging, clinical, behavioral and genetic information that researchers world-wide can use for meaningful research to enhance early brain development of all children.

Example of new Yale research utilizing dHCP data: Some major pathways for learning and social skills are evident shortly after birth

Image - Neuroscience News 10/5/25


"Born to Connect:" Newborn Brain wired for Social Awareness Development

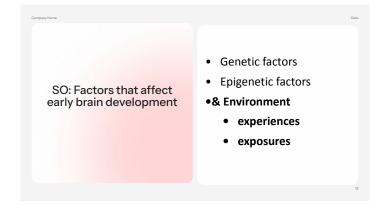
"Brain connectivity is linked to facial attention"

A new study out of Yale found that connectivity within the brain's social network was already quite robust and active a few weeks after birth.

Chawarska, K et al (2025) Functional Connectivity in the Social Perception Pathway at Birth is Linked to Attention to Faces at 4 months. Biological Psychiatry Global Open Science, 5:6 Nov. 2025.

Social Perception and Face Perception Pathways in the brain

New Brain Development Research of processes that underlie reading September 19, 2025 \cdot



The brain processes that underlie reading are found to start in utero.

"People don't understand that learning to read is a long process with many milestones that unfold over many years.... starting with oral language." Nadine Gaab, Neuroscience

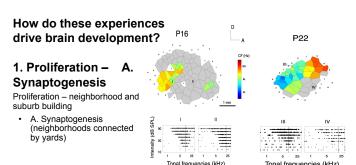
EI RELEVANT DETAILS OF THIS RESEARCH SHARED IN COMING SLIDES

Turesky, T., et al. 2025 Longitudinal trajectories of brain development from infancy to school age abd their relationship with literacy development. PNAS, 122:24,1-12.

Charles, S. J., Michalles, E. D., Lotting Hardward, S. C., Malliming, K. T., Leber, D., & Duerteer, E. D. (2029). Longitudinal Associations Between Screen Time, Brain Development, and Language Outcomes in Early Childhood. bioRxiv, 2025-08.8.

Chawarska, K. et al (2025) Functional Connectivity in the Social Perception Pathway at Birth is Linked to Attention to Faces at 4 months. Biological Psychiatry Global Chawarska, K. et al (2025) Functional Connectivity in the Social Perception Pathway at Birth is Linked to Attention to Faces at 4 months. Biological Psychiatry Global Chawarska, K. et al (2025) Functional Connectivity in the Social Perception Pathway at Birth is Linked to Attention to Faces at 4 months. Biological Psychiatry Global Chawarska, K. et al. (2025) Functional Chawarska, K. et al. (2025) Functional Chawarska, Chawars

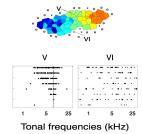
o-3 years Examples of Experiences That Drive Speech, Language & Cognitive Development



The importance of play and peer interaction: learning as a social and communication process:

- Peer play builds turn-taking and joint attention skills in Toddlers and Preschoolers
- Peer communication builds cooperation, problem solving, taking the perspective of others, and problem solving

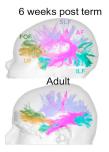
Zhang, Bao & Merzenich, Nature Neuroscience, 2001


P80

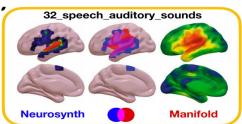
2. Pruning

Pruning – clearing out the trees, unpaved roads, old unused houses, and other barriers to development

Competitive elimination


Zhang, Bao & Merzenich, Nature Neuroscience, 2001

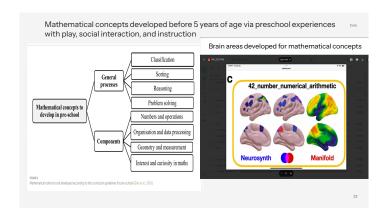
Pruning Sculpts The Brain For Increased Efficiency but can also Limit Development, e.g language exposure


- Early in development proliferation prevails.
 - Young children make many more new connections than adults.
- · Later in development pruning is more important.
 - Adults shift from a young brain that is good at learning to an older brain that is more effective and efficient but more rigid.
- We get better and better at fewer and fewer things!

DEHAENE-LAMBERTZ & SPELKE NEURON 2015

How Language, Reading & Numerical Concepts Change the Brain

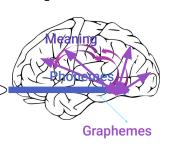
Brain Regions that Develop Naturally to Learn Speech



 $\label{lower_communication} \text{JONES ET AL}, \text{NATURE COMMUNICATIONS} \ | \ (2022) \ 13:1643 \ | \ \underline{\text{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\text{www.nature.com/nature.com/naturecommunication}} \ | \ \underline{\text{NATURE COMMUNICATIONS}} \ |$

Brain Regions Developed Through Teaching of Reading

 $\texttt{JONESETAL}, \texttt{NATURE COMMUNICATIONS} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\texttt{www.nature.com/naturecommunications}} \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\texttt{www.nature.com/naturecommunications}} \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\texttt{www.nature.com/naturecommunications}} \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\texttt{www.nature.com/naturecommunications}} \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\texttt{www.nature.com/naturecommunications}} \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{https://doi.org/10.1038/s41467-022-29047-4}} \ | \ \underline{\texttt{www.nature.com/naturecommunications}} \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ \underline{\texttt{NATURE COMMUNICATIONS}} \ | \ (2022) \ 13:1643 \ | \ (2022) \ 13:1643 \ | \ (2022) \ 13:1643 \ | \ (2022) \ | \ (2022) \ | \ (2022) \ | \ (2022) \ | \ (2022) \ | \ (2022) \ | \ (2022) \ | \ (2022) \ | \ (2022) \ |$

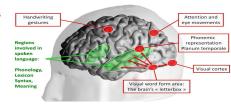


It's not just about building brain regions -connection networks are required

Brain Processes in Reading Acquisition

Reading specializes the visual association cortex of the left hemisphere for rapid recognition of letter strings and a direct connection to the speech recognition phonemic area in the left temporal lobe. Initially, children decode words deliberately. (orange arrows)

After reading automatizes with instruction and practice, the child develops rapid access of the lexicon and meaning. (purple arrows)


Proliferation B. Axon
Development

Development

Brain Processes in Reading Acquisition

Learning to read requires creating a new *visual* language link

Connecting a visual representation of written words to brain areas for speech sounds and meaning

Dehaene, S. (2009). Reading in the brain: The science and evolution of a human invention (Vol. 7). New York: Viking.

Average Longitudinal Trajectories from infancy through childhood by measure.

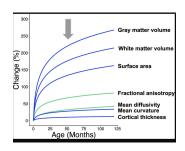


Figure 2

Notice the trajectories of the top three brain measures are most profound by 50 months (just over 4 years of age)

- Gray matter development shows development of cortical cells - specific regions
- White matter volume represents the connection pathways
- Surface area is a measure of brain size
 & volume

Turesky, T., et al. 2025 Longitudinal trajectories of brain development from infancy to school age abd their relationship with literacy development. PNAS, 122:24,1-12.

Longitudinal Trajectories based on phonological processing skill (essential for decoding) in preschool versus early kindergarten

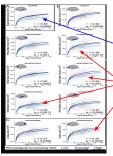
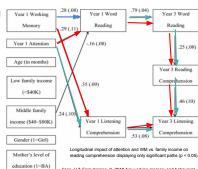


Figure 3

Children with low phonological processing scores tended to have less gray matter volume here A. (Critical for speech sound perception) at birth.

And, although they maintained similar rates of development as higher scorers, they have lower rates of white matter growth in other left hemisphere brain regions important for reading, language and other academic capacities

Dark blue lines represent trajectories in associated with standardized phonological processing scores: i.e., skill level; dark blue (>115) violet represents average (85-115), and light blue represents Low (<65).


Turesky, T., et al. 2025 Longitudinal trajectories of brain development from infancy to school age abd their relationship with literacy development. PNA

How Reading vs Listening interact by school age Reading eases comprehension and retention when one can

· Move around within text easily

- Re-read sections if struggling to understand
- Highlight important points to revisit

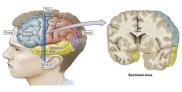
When quizzed on content, older adolescent students who read material compared to those who listened to a podcast on their own time, performed significantly better. But, for students with Dyslexia, effortful decoding impairs extracting meaning and overloads working memory and for students with attention or working memory problems both word-reading and reading comprehension are impacted

Jiang, H & Farquharson, K. 2018 Are working memory and behavioral attention equally important for both reading and listening comprehension? Language and Reading Research Consortium. DOI https://doi.org/10.1007/s11145-018-980-y

Oral Language skills affect more than reading: Cognitive Components of Sentence Comprehension

Montgomery, J. W., Gillam, R. B., & Evans, J. L. (2021). A new memory perspective on the sentence comprehension deficits of school-age children with developmental language disorder: Implications for theory, assessment, and intervention. Language, Speech, and Hearing Services in Schools, 52(2), 449-466.

The Language Tract (AF Left)


The Left Arcuate Fasciculus (AF Left) builds to connect the regions of the brain essential for listening and understanding oral language and developing the ability to speak: words, sentences and full dialogues

Note that the first 4 years of life are when the fiber tract is laid down - around 6 years you see the proliferation

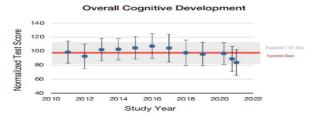
B Tract Mean FA AF Left 0.60 0.45 0.15 0.5 6 18 40 80 C Normative Trajectorie

0.15 0.5 2 6 18 40 80 **D** Normalized Quantile

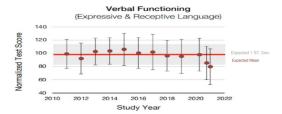
Synaptic pruning fine-tunes circuitry

The brain prunes regions and fiber tracts dependent on the amount of experience - if little experience a region and it's connections are pruned away

We saw evidence of the impact of limited environmental exposure on development and/or effects of pruning during experiential exposure limitations during Covid


The COVID-19
Pandemic & Early
Child Cognitive
Development.

Sean Deoni, PhD
Advanced Baby Imaging Lab, INSPIRE Center, Rhode Island Hospital;
Departments of Radiology and Pediatrics, Warren Alpert Medical School
Brown University



Yearly Trends in Overall Cognitive Development, Dioni et al., 2022

Mean composite scores from a standard assessment tool (Mullen Scales of Early Learning) calculated per year
 783 children (401 female), 3-months to 3-years of age, 1348 total measures.

Yearly Trends in Verbal Functions, Dioni et al., 2022

- Mean composite scores from a standard assessment tool (Mullen Scales of Early Learning) calculated per year.
- 783 children (401 female), 3-months to 3-years of age, 1348 total measures.

Implications for Public Policy Because the Human Brain is an experience dependent organ, early intervention during the critical brain period of birth to five dramatically enhances learning potential

As a result, early Intervention prevents the high educational costs of later special services

- Early intervention significantly decreases supplemental reading and math curriculum expenditures
- Early intervention can prevent many learning challenges that may result in diagnosis of learning disability and require special services
- Early intervention significantly decreases emotional and behavioral effects from Adverse Childhood Experiences that alter social-emotional networks & contribute to later disciplinary costs

Thank you

Q & A

Appendix

Brief Brain Facts (BBF)

- It is the most advanced biological structure in the universe
- Comprised of 86 billion neurons and 100 trillion connections
- Comprised of about 2% of body weight but utilizes about 20% of the body's energy, mostly for maintaining neuron activity and cellular communication
- Neurons can transmit signals up to 268 MPH
- Synaptic connections are constantly active; at any given moment 50 trillion interactions are happening
- The brain can rewire itself through neuroplasticity, adapting to changes in environment, experiences, learning and injury.
- 7 million miles of neural connections 40x greater than the distance between earth and the moon.
- Processes 65,000 thoughts per day.

NAEP 2024: The Middle & High School Achievement **Crisis**

How prepared are American students when they graduate? Reading and mark sills among 12th graders felt or their lowest levels on record in the fits post pandemic assessments in 2024. The National Assessment of Educational Progress measures student outcomes on a 500-point scale for read.

Grade 12 reading scores, by percentile

90th percentile 75th percentile 313 283 255 224