

Stat 50 – Worksheet #11: The Poisson Distribution

1. Find the value of the following sums:

$$(a) \sum_{x=0}^{\infty} \frac{e^{-2} 2^x}{x!}$$

$$(b) \sum_{x=2}^{\infty} \frac{e^{-2} 2^x}{x!}$$

2. The number of cactus plants in a square yard of land in a certain desert has a Poisson Distribution with a mean of 0.2 cactus per square yard.

- What is the probability there are between 1 and 3 (inclusive) cactus plants in a square yard?
- What is the probability there is at most one cactus plant on a randomly selected square yard?
- Give the probability mass function for the number of cactus plants in 10 square yards of land in this desert.
- What are the mean and standard deviation of the number of cactus plants in a 10 square yard plot of land in this desert.
- What is the probability of at least 2 cactus plants in a random 10 square yard plot in this desert?

3. Suppose the random variable X has a Poisson distribution with parameter λ , where the value of λ is unknown. However, it is known that $P(X = 0) = 2P(X = 1)$. Find λ . (Hint: Write out $P(X = 0)$ and $P(X = 1)$ using the formula for Poisson probabilities even though λ is unknown.)

4. For a binomial random variable, if n is large and p is very small, then the Poisson distribution with $\lambda = np$ will provide a very good approximation to the binomial distribution. In this exercise, we will compare a Poisson approximation to a binomial probability to the exact binomial probability. Suppose X has a binomial distribution with $n = 1000$ and $p = 0.002$

- Use the binomial probability formula to calculate $P(X = 1)$ exactly.
- Use the Poisson distribution with $\lambda = np$ to approximate the probability in part (a).
- Compare your answers in parts (a) and (b). Is the Poisson a good approximation to the binomial in this case?
- Now suppose, $X \sim \text{Bin}(n = 3, p = 0.5)$. Calculate the exact binomial probability that $X = 1$ as well as the Poisson approximation to this binomial probability (note that $\lambda = np = 3(0.5)$) and compare your answers. (As a rule of thumb, the Poisson approximation will be very good if $n \geq 100$ and $np \leq 10$. So the approximation is not quite so accurate in this part.)