

Stat 50 – Worksheet #19 and #20: Review of Discrete and Continuous Probability Distributions and Central Limit Theorem

1. Suppose the duration of a country music song is normally distributed with mean 3.5 minutes and standard deviation 0.2 minutes.
 - (a) What percent of country music songs are over 3.9 minutes long?
 - (b) What percent are between 3.4 and 3.9 minutes long?
 - (c) Find the 30th percentile of lengths of country music songs.
 - (d) What would the standard deviation need to be so that the probability a country music song exceeds 3.7 minutes is 0.40?
 - (e) If 80 country music songs are randomly selected, what is the probability the **sample mean duration** is under 3.55 minutes?
 - (f) If 10 country music songs are randomly selected, what is the probability the total duration of the sampled songs is over 38 minutes long?
2. Suppose that 20% of Americans are runners.
 - (a) If 5 Americans are randomly selected, what is the probability
 - i. exactly three are runners
 - ii. at least two are runners
 - (b) If 500 Americans are randomly selected
 - i. what are the mean and standard deviation of the number of runners among the 500 Americans selected
 - ii. what is the probability at most 90 of the 500 are runners?
 - (c) Letting S represent a runner and F a non-runner
 - i. write out all possible sequences of S's and F's that would correspond to the event exactly two of five people are runners AND the last person is a runner.
Hint: One such outcome is FSFFS, list all others.
 - ii. What is the probability of the outcome FSFFS?
 - iii. What is probability of obtaining your second runner on the fifth person sampled? (Hint: Use previous parts.)
3. Suppose X , the number of knots in yard of rope, has a Poisson distribution.
 - (a) If the probability of no knots in a yard is 0.25, find the mean of X .
 - (b) Find $P(X \geq 2)$
 - (c) Let the random variable Y = the distance in yards between successive knots. What are the mean and standard deviation of the distance between knots?
 - (d) What is the probability that the distance between knots is more than 2 yards?
 - (e) Find the 60th percentile of distances between knots.

4. Suppose a fair six-sided die is tossed until the first 5 appears. What is the probability it takes
 - (a) exactly 4 tosses?
 - (b) at least 10 tosses?
 - (c) What is the average number of tosses needed to obtain the first 5?
5. A fish tank at a pet store contains 15 goldfish and 7 koi. A customer is going to use a fishing net to randomly catch 4 fish from the tank to buy. Let X = the number of koi fish among the 4 the customer buys.
 - (a) Find $P(X = 4)$
 - (b) What is the probability the customer gets 4 fish of the same kind?
 - (c) What is the formula for $P(X = x)$ for $x = 0, 1, 2, 3, 4$?
 - (d) What is the average (or mean) number of koi that will be obtained by the customer?