

Stat 50 – Worksheet #1: Review of Calculus

1. Find the derivative of each function.

(a) $f(x) = 2x^4 + \frac{1}{x^3} + x + 35$

(b) $f(x) = 1 - e^{-5x} + \ln(x)$

2. Let g be the piecewise-defined function given below.

$$g(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ \frac{1}{2}x & \text{if } 0 < x \leq 1 \\ \frac{3}{4} & \text{if } 1 < x \leq 2 \\ 0 & \text{if } x > 2 \end{cases}$$

(a) Sketch a graph of g

(b) Find $\int_0^2 g(x)dx$

(c) Find $\int_{-\infty}^{\infty} g(x)dx$

(d) Find $\int_{-\infty}^{1.5} g(x)dx$

(e) Find $\int_{-\infty}^{-0.7} g(x)dx$ (Don't work too hard.)

(f) Find $\int_{-\infty}^k g(x)dx$ where k is a real number with $k < 0$

3. Find the value of k that satisfies the following equation:

$$\int_0^1 kx^2(1-x)dx = 1$$

4. Find the following limits:

(a) $\lim_{x \rightarrow \infty} (e^{-\frac{x^2}{2}})$

(b) $\lim_{x \rightarrow -\infty} (e^{-x^2})$

(c) $\lim_{x \rightarrow -\infty} (1 - e^{-2x})$

(d) $\lim_{x \rightarrow -\infty} \frac{1}{\pi(1+x^2)}$

5. Recall that a geometric series of the form $\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + \dots$ converges to $\frac{a}{1-r}$ if $|r| < 1$. Determine if the given series converges. If the series converges, find its sum.

(a) $\sum_{k=0}^{\infty} \left(\frac{\pi}{2}\right)^k$

(b) $\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k$

(c) $\frac{2}{3} + \frac{2}{3^2} + \frac{2}{3^3} + \dots$ (Hint: What is a and what is r ?)