

Stat 50 – Worksheet #26: Statistical Significance and Large Sample Test for Difference Between Two Means

1. Suppose a hypothesis test of $H_0 : \mu \leq 10$ vs $H_1 : \mu > 10$ is conducted and the data result in a P-value of 0.04.
 - (a) True or False: The test is statistically significant at the 5% significance level.
 - (b) True or False: The test is statistically significant at the 1% significance level.
 - (c) True or False: The null hypothesis is rejected at the 5% significance level.
 - (d) True or False: The null hypothesis is rejected at the 1% significance level.
 - (e) True or False: Testing the two-tailed version ($H_0 : \mu = 10$ vs $H_1 : \mu \neq 10$) with the same data would result in rejection of the null hypothesis at the 5% significance level.
2. A study is conducted to determine if there is a difference in the mean amount of caffeine consumed in a day by mathematicians and engineers. A random sample of 50 mathematicians gives an average of 250mg of caffeine per day with a standard deviation of 40 mg while a sample of 35 engineers gives a mean of 270 mg of caffeine in a day with a standard deviation of 45 mg.
 - (a) The null hypothesis is: $H_0 : \mu_{math} = \mu_{eng}$. What is the alternative hypothesis?
 - (b) Calculate the P-value of the data.
 - (c) Based on the P-value would you reject the null at the 5% level of significance? at the 1% significance level?
 - (d) Would you conclude there is a difference in the mean caffeine consumption per day between mathematicians and engineers? Why or why not?
3. A hypothesis test is conducted to determine if the mean score on a certain test is lower for brown-eyed people compared to green-eyed people. Thus, a test of $H_0 : \mu_B = \mu_G$ vs $H_1 : \mu_B < \mu_G$ is conducted. A summary of the data are $\bar{X}_B = 70, n_B = 100, s_B = 20$ and $\bar{X}_G = 80, n_G = 105, s_G = 30$.
 - (a) Calculate the P-value for these data.
 - (b) Can you conclude that the mean score is lower for people with brown eyes compared to people with blue eyes? Why or why not?
 - (c) What would the P-value be if the two-tailed version of this test ($H_1 : \mu_B \neq \mu_G$) were conducted with the same data?
4. Why is the test statistic $\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}$ inappropriate for testing the difference between means with these sample data: $\bar{X} = 50, n_x = 8, s_x = 9$ and $\bar{Y} = 60, n_y = 5, s_y = 10$?