

Stat 50 – Worksheet #8: Joint Discrete Random Variables

1. Let X represent the number of cars and Y the number of trucks that pass through a certain toll booth in a one-minute time interval. The joint probability mass function of X and Y is:

		Y (trucks)		
		0	1	2
		0	0.10	0.05
X(cars)	1	0.10	0.10	0.05
	2	0.13	0.25	?

(a) What is the probability of 2 trucks and 2 cars in a one-minute interval?

(b) What is the probability of no trucks in the one-minute interval?

(c) Find the marginal distribution of Y , $p_Y(y)$.

(d) Find the marginal distribution of X , $p_X(x)$

(e) Find μ_X , μ_Y and σ_y^2 .

(f) Find the conditional distribution of X given $Y = 0$.

(g) Find the conditional expectation $E(X|Y = 0)$ and interpret this value using plain English.

(h) Find $P(X + Y = 3)$.

(i) Find μ_{X+Y} . Interpret this mean using plain English.

(j) Find μ_{XY}

(k) Use your answers to parts (e) and (j) to see if $\mu_{XY} = \mu_X \cdot \mu_Y$

2. Suppose that X and Y are independent random variables with probability mass functions below.

X	0	1	2	
$p_X(x)$	0.3	0.2	0.5	
Y	0	1	2	3
$p_Y(y)$	0.1	0.2	0.4	0.3

(a) Find μ_X and μ_Y

(b) Find the joint distribution of X and Y . (Remember X and Y are independent so, for example, $p(0, 1) = P(X = 0, Y = 1) = p_X(0) \cdot p_Y(1) = 0.3(0.2) = 0.06$)

		Y			
		0	1	2	3
X=0		0.06			
X=1					
X=2					

(c) Find the probability distribution of $W = XY$.

(d) Find μ_W

(e) Does $\mu_W = \mu_{XY}$ equal $\mu_X \cdot \mu_Y$?