On behalf of the California State University Louis Stokes Alliance for Minority Participation (CSU-LSAMP), it is my great pleasure to present this report on the 22-year history of the Alliance and its impact on broadening participation in STEM disciplines. CSU-LSAMP is an alliance of all 23 campuses of the California State University, which, since 1993, has been supported by grant funding from the National Science Foundation's Louis Stokes Alliance for Minority Participation program. CSU-LSAMP is both grateful for the generous funding provided by the NSF and proud to be a member of the National LSAMP community.

This report, which provides an update to CSU-LSAMP’s 2011 Impact Report, outlines the success of our Alliance. Over the history of CSU-LSAMP, the number of STEM baccalaureate degrees awarded by the CSU to students from underrepresented minority groups has more than tripled. Our data show significant increases in persistence and graduation rates for CSU-LSAMP URM participants, demonstrating that our programs are helping to close the achievement gaps for underrepresented minorities in STEM. CSU-LSAMP participants are engaging in research on campuses, in national laboratories, and around the world, through international research experiences. More than 40% of students graduating from the CSU-LSAMP undergraduate program have gone on to pursue graduate-level STEM degrees, and some have already entered the professoriate. CSU-LSAMP has hosted twelve Bridge to the Doctorate cohorts, serving 152 students, supporting them through the Master’s degree, and increasing their competitiveness for Ph.D. programs. Of course, the true indicator of success lies in the individual stories of our students, whose achievements and extraordinary potential serve as an inspiration for all. Some of those stories are featured within this report.

The National Science Foundation has made a substantial investment in CSU-LSAMP over more than twenty years. We believe that investment has been a wise one. Support from the CSU Chancellor’s Office and from individual campuses provides a minimum of $2 for every $1 of NSF funding. CSU-LSAMP finds ways to support more students through leveraging existing campus services and other programs that offer exciting opportunities for our students. Completion of a bachelor’s degree in STEM is estimated by the US Census Bureau to translate to an additional $1M in work-life earnings for an individual. We estimate that CSU-LSAMP’s efforts have resulted in an additional 7,000 students graduating with a STEM degree, collectively representing $7 billion dollars in additional work-life earnings.

Finally, I would like to acknowledge the contribution of the many dedicated faculty, staff, and administrators, who have contributed over the years to the success of CSU-LSAMP and its students. Thank you!

Sincerely,

Lisa Hammersley, Ph.D.
Lead Project Director, CSU-LSAMP, Professor of Geology, California State University, Sacramento

Published by California State University Louis Stokes Alliance for Minority Participation ~ December 2015 ~

Copyright © (2015); California State University, Sacramento
All rights reserved.
Not to be reproduced without permission.

Earlier this year we were deeply saddened to hear of the passing of Former Rep. Louis Stokes, who had such an important impact on civil rights and equality. This report is dedicated to his memory.
CSU-LSAMP: A LEVERAGED INVESTMENT

CSU-LSAMP provides a comprehensive set of academic support and professionalization activities to 3,000 STEM students per year by leveraging NSF’s investment through additional financial support from the CSU Chancellor’s Office and individual campuses, sharing of resources across programs, and institutionalization of high-impact practices.

TRIPLING THE NSF’S CONTRIBUTION

CSU-LSAMP has consistently been successful in leveraging the NSF’s contribution into additional funds. With 23 campuses in the Alliance, this is extremely important, especially as we have transitioned into a program that emphasizes research experiences and professional development for students. The annual contribution of $800,000 from the NSF is doubled by an annual allocation of $800,000 from the CSU Chancellor’s Office. This investment from the Chancellor’s Office confirms the commitment of the CSU to the LSAMP model for student support. In addition, individual campuses support their campus-based programs through financial allocations, staff salary, and faculty release time. The level of campus-based support varies from one campus to another and has varied considerably over time as budgetary conditions in California have changed. However, we estimate that over the 23-year history of CSU-LSAMP, campus-based contributions have, at a minimum, equaled the $800,000 per year provided by NSF. Thus, through the support of the CSU Chancellor’s Office and individual campuses, CSU-LSAMP has been successful leveraging an additional $2 for every $1 provided by NSF, effectively tripling the baseline CSU-LSAMP budget.

LEVERAGING RESOURCES & SERVICES

Over the 23-year history of CSU-LSAMP, new programs that provide academic support and research opportunities, some spurred by the success of CSU-LSAMP, have been developed on CSU campuses. In order to better leverage the resources of these programs and coordinate their efforts, many of our campuses have created central offices of student research or student academic support in which the LSAMP program is housed. This more collaborative approach to student development and success would not be possible if the Alliance campuses had not invested in the LSAMP model by institutionalizing activities shown by CSU-LSAMP to be highly successful.

INSTITUTIONALIZATION

As described in this report, CSU-LSAMP has evolved over the years from a program that primarily supported lower-division students through supplemental instruction and summer bridge programs, to one that now also provides research opportunities, international opportunities and professionalization activities. This comprehensive approach to student development and success would not be possible if the Alliance campuses had not invested in the LSAMP model by institutionalizing activities shown by CSU-LSAMP to be highly successful.

CSU MONTEREY BAY: AN EXAMPLE OF SUCCESSFUL LEVERAGING

CSU Monterey Bay joined CSU-LSAMP in 2004. From the outset, the program received tremendous support from faculty and campus administrators, and has had a lasting impact on STEM programs. The much-needed financial and programmatic support of STEM retention and graduation planted the seed for similar, grant-funded projects and STEM services in tutoring, course support, research, and internships. LSAMP’s emphasis on graduate school preparation and undergraduate research has been particularly transformational for CSUMB. The program led to increased faculty support of undergraduate research and spurred development of graduate school preparation curricula and workshops. Ultimately, the success of the LSAMP program, along with other campus development, led to the launch, in 2009, of the Undergraduate Research Opportunities Center (UROC), which, with CSU-LSAMP at its center, was the first centralized undergraduate research office in the CSU system. UROC, which began with a lean staff that was primarily grant-funded, now has 8 staff, five of whom are funded by the University, and houses a number of publicly and privately supported undergraduate programs. The campus also provides permanent office and classroom space in the university’s library, which is the student hub of the campus.

ECONOMIC IMPACT OF CSU-LSAMP

The economic impact of NSF’s investment in CSU-LSAMP is associated with a substantially higher rate of baccalaureate degree completion. Therefore, an indicator of economic impact of NSF’s investment in CSU-LSAMP is the added work-life income of students who might not have earned baccalaureate degrees were it not for their participation in CSU-LSAMP. Since its inception in 1993-94, CSU-LSAMP has served 23,360 students. Of those for whom tracking data is available (18,875), 7,999 earned STEM degrees, for a completion rate of 42 percent. Applying this completion rate to all 23,360 CSU-LSAMP participants suggests that 14,000 earned STEM bachelor’s degrees by Spring 2015. Furthermore, evaluation of our project showed that CSU-LSAMP participants were twice as likely to complete their degree as non-participants. Thus, we can estimate that the impact of CSU-LSAMP is 7,000 additional Bachelor’s degrees in STEM. It should be noted that this estimate does not include the additional CSU-LSAMP participants who graduated with non-STEM degrees and also does not include the additional work-life earnings of the 43% of CSU-LSAMP graduates who go on to graduate-level study. Thus we consider these estimates to represent a minimum.

ECONOMIC IMPACT OF NSF’S INVESTMENT IN CSU-LSAMP’S UNDERGRADUATE PROGRAM

One way to assess the economic impact of NSF’s investment in CSU-LSAMP is to examine the economic benefit that is likely to accrue to students who, without the NSF’s support of CSU-LSAMP, might not have completed a baccalaureate degree. It has been well established that average annual income and work-life earnings are positively correlated with level of educational attainment, and that differences in relative earnings by educational attainment have grown along with technological changes that require a more highly skilled and educated workforce. For example, the U.S. Census, in its October 2012 report titled, “Work-life earnings by field of degree and occupation for people with Bachelor’s degree: 2011” (available at: https://www.census.gov/prod/2012pubs/ascsr11-04.pdf), calculated “synthetic estimates” of work-life earnings over a hypothetical 40-year working life for holders of Bachelor’s degrees in different disciplines employed in different occupations. This report showed that the average work-life earnings for holders of a Bachelor’s degree in STEM is $2,648 and, depending on occupation, can be up to $3,040. In the same report, the U.S. Census shows the estimated differences in work-life earnings for different levels of education. The average work-life earnings for those with some college education are $1,648, meaning the added value of attaining a Bachelor’s degree in STEM is approximately $1,000 over a lifetime.

As noted later in this report, participation in CSU-LSAMP is associated with a substantially higher rate of baccalaureate degree completion. Therefore, an indicator of economic impact of NSF’s investment in CSU-LSAMP is the added work-life income of students who might not have earned baccalaureate degrees were it not for their participation in CSU-LSAMP. Since its inception in 1993-94, CSU-LSAMP has served 23,360 students. Of those for whom tracking data is available (18,875), 7,999 earned STEM degrees, for a completion rate of 42 percent. Applying this completion rate to all 23,360 CSU-LSAMP participants suggests that 14,000 earned STEM bachelor’s degrees by Spring 2015. Furthermore, evaluation of our project showed that CSU-LSAMP participants were twice as likely to complete their degree as non-participants. Thus, we can estimate that the impact of CSU-LSAMP is 7,000 additional Bachelor’s degrees in STEM. It should be noted that this estimate does not include the additional CSU-LSAMP participants who graduated with non-STEM degrees and also does not include the additional work-life earnings of the 43% of CSU-LSAMP graduates who go on to graduate-level study. Thus we consider these estimates to represent a minimum.

While the estimate of additional earnings as calculated above is hypothetical, it gives a sense of the magnitude of the economic impact that results when an investment is made in improving graduation rates. To date, the NSF has invested $18 million in CSU-LSAMP. Our estimates above suggest that, at a minimum, the return on each $1 of investment is $368 in additional earnings of students who might not have earned STEM degrees were it not for CSU-LSAMP. The CSU has also made a large investment in this effort. If we consider the combined investment of $57 million by the NSF, the Chancellor’s Office of the CSU, and individual campuses, we see a return on each $1 of investment of $122 in additional work-life earnings.

To estimate the added earnings (and therefore, spending pow-er) of the 7,000 students who might not have completed their STEM degrees, we simply multiply the number of students by the differential in earnings of those with some college education and those with a Bachelor’s degree that is provided in the US Census report.

7,000 additional STEM degrees x $1,000,000 in additional work-life earnings = $7 billion
The California State University (CSU) was formed when the separate “California State Colleges” were brought together as a system by the Donahoe Higher Education Act of 1960. The campuses of the CSU include comprehensive and polytechnic universities and, since 1995, the California Maritime Academy, a specialized campus. Today, with 23 campuses, over 460,000 students, and 47,000 faculty and staff, the CSU is the largest, the most diverse, and one of the most affordable systems of higher education in the nation.

Since 1961, the CSU has awarded more than 2.9 million bachelor’s, master’s, and joint doctoral degrees, including over 2.3 million baccalaureate degrees. Since 1975–76, about half of all baccalaureate degrees conferred in California have been awarded by the CSU. In 2013–14, the CSU awarded 103,637 degrees, including 85,063 baccalaureate degrees.

Over the past two decades, the number of under-represented minorities (URM) obtaining CSU undergraduate degrees more than tripled, growing from 9,108 in 1993–1994 to 30,792 in 2014–2015. Over the same time period, baccalaureate degrees awarded to Asian American students increased by 80% and the number of non-Hispanic White students earning baccalaureate degrees showed an overall decrease of 11%.

CSU-LSAMP PHASES

The CSU has been fortunate to have been awarded NSF-LSAMP funding for five successive five-year project periods. Each project period has had somewhat different objectives and programmatic emphases, building upon the accomplishments of the preceding period(s).

In Phase I, the primary objective was to double the number of STEM BA/BS degrees awarded by the CSU to URM students. To accomplish this, the program emphases were on development of partnerships with community colleges, providing summer bridge programs for freshman-level students at both the 2-year and 4-year institutions, and academic excellence workshops in mathematics.

In Phase II, CSU-LSAMP set its focus on improving individual URM-STEM student retention and progression to the baccalaureate degree by expanding academic support to a wider range of “gatekeeper” science courses for both freshman and sophomore-level students and improving the preparation of community college students for transfer.

By Phase III, many of the lower division practices and transfer bridges developed and supported by CSU-LSAMP were institutionalized. Therefore, in Phase III, the CSU-LSAMP program began to transition from a program that primarily supported lower-division students in introductory science courses and pre-transfer activities to a program that also served upper division students in research and other activities designed to motivate them to pursue graduate study. CSU-LSAMP’s attainment of Phase III status coincided with the introduction of the NSF-LSAMP “Bridge to the Doctorate (BD) Activity,” and CSU-LSAMP has been awarded 12 BD activities since then.

In 2008, CSU-LSAMP became a Senior-level LSAMP, and its objectives were again modified to build on past accomplishments in a manner that furthers the NSF’s goal of preparing a diverse, globally engaged scientific and technological workforce. As a Senior-level Alliance, the focus of CSU-LSAMP is on individual student persistence and progression to graduate study, institutionalization and dissemination of best practices, and expanding opportunities for student engagement in international activities.

Our current project, referred to as Senior-level II, continues the goals of the Senior-level I project. Recognizing the great differences between our campuses however, we reorganized our activities in such a way that individual campuses could tailor their programs to meet the needs of their students while still maintaining consistency across the Alliance. A deeper look at this approach is presented in the next section.

HISTORY

Since 1993, the NSF’s LSAMP program has provided the California State University the impetus to bring its campuses together to develop a comprehensive and unified system-wide effort to increase the number of STEM baccalaureate degrees awarded by the system to students from underrepresented minority groups. The California State University–Louis Stokes Alliance for Minority Participation (CSU-LSAMP), has proven to be highly effective; and, with on-going funding and program support from the NSF, the Office of the Chancellor of the CSU, and participating campuses, the project has grown in size and evolved in its scope.

CSU-LSAMP initially included 18 CSU campuses, each associated with at least one California Community College partner. Since then, new campuses were added to both the system and to the Alliance, which currently includes all 23 of the universities of the CSU.

CSU-LSAMP initially included 18 CSU campuses, each associated with at least one California Community College partner. Since then, new campuses were added to both the system and to the Alliance, which currently includes all 23 of the universities of the CSU.

CSU-LSAMP initially included 18 CSU campuses, each associated with at least one California Community College partner. Since then, new campuses were added to both the system and to the Alliance, which currently includes all 23 of the universities of the CSU.
INSIDE CSU-LSAMP: A STRUCTURE THAT WORKS

At the 23 unique campuses of the California State University system working together as an alliance, the needs of students are varied. In order to maximize our impact, CSU-LSAMP has developed a structure that allows each campus to provide a set of activities that best meets the needs of their own students while also maintaining a strong Alliance identity.

Just as no two LSAMP Alliances are identical, no two CSU campuses are the same. Whereas CSU-LSAMP has a common set of services and activities, the individual programs on the 23 participating campuses maintain a fair degree of autonomy in deciding how their programs are structured. Program size varies widely by campus, ranging from 20 participants to 500 participants per year. Administrative structure also varies widely; some programs are run by a single campus coordinator, whereas others are part of a larger unit that manages multiple programs (e.g., McNair or NIH-NIGMS training programs).

In that same vein, activity emphases and delivery modes vary by campus. So long as they adhere to a common set of program components designed to meet a common set of objectives, each CSU campus offers a slightly different version of the program that best suits their needs. Some campuses have chosen to provide an emphasis on providing academic support in “gatekeeper” courses and facilitating transitions with the primary goal of improving academic performance, persistence in STEM, and attainment of the baccalaureate degree; and (2) enhancing student competitiveness for success in gaining admission to graduate programs and careers in STEM.

Lastly, comprehensive programs with substantial activities at different stages in the pipeline, include academic support activities, transitional activities, and research and professional development activities, with the dual goals of (1) improving preparation/performance and persistence to baccalaureate degree; and (2) enhancing student competitiveness for success in gaining admission to graduate programs and careers in STEM.

Given the breadth and complexity of an alliance of 23 campuses, each allowed to offer a series of activities to meet their emphasis, there is necessity for a strong central office. The “lead institution” is responsible for administering, funding, data collection, and evaluation and reporting. Alongside this, CSU-LSAMP has adopted a collegial decision making process, whereby campus coordinators meet annually to discuss programmatic elements and the common set of objectives. CSU-LSAMP also utilizes a Program Oversight Committee that meets quarterly to monitor the policies and procedures pertaining to campus budgets, data collection, and reporting. Program Oversight Committee members are selected by and from the 23 campus partner institutions, and are responsible for representing 4-5 campuses.

Objective 1 – Academic Support: Supporting students in gatekeeper courses in STEM with the goal of improving student performance and persistence in STEM:
- Summer Bridge Programs in STEM
- Academic Excellence Workshops
- Textbook Loan/Reimbursement Programs
- Other Academic Support Activities
- Non-STEM Summer Bridge Programs
- First Year Programs for Freshmen and Community College Transfers
- Orientation Programs
- Other Transition Activities
- Internships
- International Experience

Objective 2 – First Year or Transition Programs: Supporting students as they transition into STEM disciplines with the goal of improving persistence in STEM:
- Academic Excellence Workshops
- Textbook Loan/Reimbursement Programs
- Other Academic Support Activities
- Summer Bridge Programs in STEM
- Textbook Loan/Reimbursement Programs
- Internships
- International Experience

Objective 3 – Research and International Activities: Providing opportunities for students to engage in research, internships, and international activities, with the goal of encouraging continuation to graduate school and professional careers in STEM:
- CSU-LSAMP Supported Research
- Internships
- Other Transition Activities
- CSU-LSAMP Supported Research
- Internships
- International Experience

Objective 4 – Professional Development Activities: Providing additional professional development and graduate school preparation activities with the goal of increasing the number of students entering graduate programs and professional careers in STEM:
- Presentation/Publication of Research
- Graduation School Preparation Activities
- Participation as Facilitators/Mentors
- Other Professional Development Activities
- Common Objective: On-going LSAMP student support and exposure to career and research opportunities in STEM with the goal of increasing persistence in STEM and enhancing interest in pursuing graduate study and professional careers in STEM.
- LSAMP Advising
- Exposure to Opportunities
- Communications
- Material Support
- Clubs & Cohesion Activities
- Seminars and Regular Meetings
- Attendance at Conferences (not presenting)
IMPACT OF NSF’S SUPPORT OF CSU-LSAMP

PROVIDING A STRATEGIC FRAMEWORK FOR THE CSU’S EFFORTS TO BROADEN PARTICIPATION IN STEM

Although several of the campuses of the CSU had STEM support programs in place prior to the creation of CSU-LSAMP, most of these programs focused on specific disciplines and there was relatively little communication of best practices among the campuses. However, the NSF’s support of the creation of an Alliance among the campuses provided the opportunity to expand, coordinate and leverage the expertise and resources of the campuses in a focused system-wide effort to broaden participation in STEM. Importantly, over the years, the NSF’s vision for the LSAMP program and its expectations for successive “phases/levels” provided a strategic framework for the CSU’s development and institutionalization of effective practices at progressively higher stages in the STEM pathway, from entry at the freshman and transfer levels to support of upper division students and advancement to graduate study.

ENGAGING THOUSANDS OF STUDENTS FROM DIVERSE POPULATIONS IN STEM ENRICHMENT ACTIVITIES

CSU-LSAMP admitted its first group of participants in Summer 1994; and, as of Spring 2014 has enrolled 23,360 participants, including 19,765 students from underrepresented racial/ethnic groups. Data on the number of new students who were admitted to CSU-LSAMP in each project period is provided in Table 1. The racial/ethnic composition of the total population of CSU-LSAMP’s participants is provided in Figure 1 below.

Table 1: Number of new CSU-LSAMP participants by URM Category for Phase I, Phase II, Phase III, Senior Level I, and year 1 of Senior Level II.

Since 1993-1994, thanks to combined funding support from the NSF’s LSAMP program, the CSU Chancellor’s Office, and participating campuses, CSU-LSAMP has engaged over 23,000 students in academic support and STEM enrichment activities. The number of participants served by CSU-LSAMP per year has more than quadrupled, from 641 in 1993-1994 to 3,520 in 2014. Beginning in Phase III, CSU-LSAMP transitioned from a program that primarily provided group activities for lower division students (e.g., summer bridge and academic excellence workshops) to a program with an increased emphasis on engagement of upper division students in mentored research and preparation for graduate study. Due to this shift in emphasis, the number of participants served annually decreased somewhat but has since grown to its current level of 3,500 per year.

The primary objective of CSU-LSAMP, since its inception, has been to increase the number of STEM baccalaureate degrees awarded by the CSU to URM students. Figure 3 shows the annual number of baccalaureate STEM degrees awarded by all CSU campuses to URM students from 1994 to 2014. From the beginning of Phase I, to the first year of the Senior Level II project, annual URM-STEM baccalaureate degree production almost quadrupled, from 917 in 1994 to 3,455 in 2014, and appears to be increasing steadily. Baccalaureate STEM degrees awarded by the CSU to non-URM students increased by 28 percent during the same period. Notably, the CSU awarded a total of 37,717 STEM BA/BS degrees to URM students from 1993-1994 through 2013-2014, and an estimated 6,439 of these degrees were awarded to CSU-LSAMP level-I URM participants.

CSU-LSAMP: SUCCESS WRITTEN IN THE NUMBERS

- Since 1994, CSU-LSAMP has served 23,360 participants, including 19,765 URM students
- The annual number of participants has increased more than fourfold, from 641 in 1994 to 3,520 in 2014
- From 1994 to 2013, CSU URM-STEM undergraduate enrollment increased 208%. STEM enrollment for non-URM students increased by only 23% over the same time period
- From 1994 to 2013, CSU URM-STEM baccalaureate degree production increased 277%
- CSU-LSAMP participants are 1.2-1.8 times more likely than non-participants to remain enrolled in STEM disciplines
- CSU-LSAMP participants are two times more likely than non-participants to graduate with STEM degrees
- In 2014-15, almost 900 CSU-LSAMP students engaged in research on their own campuses, at national laboratories, and internationally
- In 2014-15, CSU-LSAMP students disseminated their research through journal articles (13), presentations at international conferences (4), presentations at national conferences (130), and presentations at regional conferences (119)

INCREASING THE NUMBER OF STEM BACCALAUREATE DEGREES AWARDED BY THE CSU TO STUDENTS FROM UNDERREPRESENTED MINORITY GROUPS

Since 1993-1994, thanks to combined funding support from the NSF’s LSAMP program, the CSU Chancellor’s Office, and participating campuses, CSU-LSAMP has engaged over 23,000 students in academic support and STEM enrichment activities. The number of participants served by CSU-LSAMP per year has more than quadrupled, from 641 in 1993-1994 to 3,520 in 2013-2014. Beginning in Phase III, CSU-LSAMP transitioned from a program that primarily provided group activities for lower division students (e.g., summer bridge and academic excellence workshops) to a program with an increased emphasis on engagement of upper division students in mentored research and preparation for graduate study. Due to this shift in emphasis, the number of participants served annually decreased somewhat but has since grown to its current level of 3,500 per year.
The differences in first through seventh year persistence rates for Hispanic and African American participants and estimates for non-participants from these groups are substantial, ranging from 1.2 times higher for both groups in the first year to 1.8 times higher for African Americans in the 4th year.

Figure 4: Comparison of Latino and African American persistence rates

- The average six-year STEM graduation rate for African American participants is 15.5% as compared to 22% for African American non-participants.
- For Hispanic participants, six-year graduation rates are 2.1 times higher than Hispanic non-participants.
- Respectively, five and six-year graduation rates of African American participants are 2.2 and 1.8 times higher than those of African American non-participants. Although average graduation rates for African American participants are lower than for non-URM comparison groups, the gap is much smaller than the gap that exists for African American non-participants.
- For example, the average six-year STEM graduation rate of African American participants is 1.5 times higher than that of African American non-participants. For African American students, the difference widens in the fifth and sixth years. Respectively, five and six-year graduation rates of African American participants are 2.2 and 1.8 times higher than those of African American non-participants. Although average graduation rates for African American participants are lower than for non-URM comparison groups, the gap is much smaller than the gap that exists for African American non-participants. For example, the average six-year STEM graduation rate of African American participants is 15.5% as compared to 22% for non-URM students, while the rate for African American non-participants is 8.4%.

Figure 5: Comparison of Latino and African American participant STEM graduation rates

- The ISR study shows that the “achievement gap” is narrowed substantially for Hispanic and African American students who are participants in CSU-LSAMP and that participant graduation rates have improved over time. Figure 5 compares graduation rates for Hispanic and African American participants with those of non-participants. The average four-year STEM graduation rate of Hispanic CSU-LSAMP participants is 2.1 times higher than that of Hispanic non-participants.
- Six-year graduation rates of Hispanic participants are 2.0 times higher than Hispanic non-participants.
- Importantly, for Hispanic participants, six-year graduation rates exceed rates for non-URM comparison groups.
- The average four-year graduation rate of African American participants is 1.5 times higher than that of African American non-participants.

IMPROVING PERSISTENCE OF URM STUDENTS IN STEM

In the California State University, as in many colleges and universities across the nation, there are considerable gaps between persistence and graduation rates for URM and non-URM students. CSU-LSAMP works to close these gaps by increasing the persistence and graduation rates for participants. To assess the impact of CSU-LSAMP participation on persistence and graduation in STEM, the Institute for Social Research (ISR) at California State University, Sacramento (the project’s evaluator) conducted longitudinal studies of annual cohorts of CSU-LSAMP Hispanic and African American participants with CSU benchmark cohorts for the period beginning in 1996-1997 and ending in 2013-2014. To enable comparison with CSU benchmark cohort data available from the Consortium for Student Retention Data Exchange (CSRDE), the CSU-LSAMP cohorts include only participants entering the CSU as first-time freshman with declared majors in STEM. Comparisons were not conducted for Native Hawaiian/Pacific Islanders because separate benchmark data from these groups are not available from CSRDE. Comparisons were not conducted for Native American and Alaska Natives since the small numbers in these cohorts are likely to produce unstable rates.

- The differences in first through seventh year persistence rates for Hispanic and African American participants and estimates for non-participants from these groups are substantial, ranging from 1.2 times higher for both groups in the first year to 1.8 times higher for African Americans in the 4th year.
- The average six-year STEM graduation rate for African American participants is 15.5% as compared to 22% for African American non-participants. For African American students, the difference widens in the fifth and sixth years. Respectively, five and six-year graduation rates of African American participants are 2.2 and 1.8 times higher than those of African American non-participants. Although average graduation rates for African American participants are lower than for non-URM comparison groups, the gap is much smaller than the gap that exists for African American non-participants. For example, the average six-year STEM graduation rate of African American participants is 15.5% as compared to 22% for non-URM students, while the rate for African American non-participants is 8.4%.

IMPROVING GRADUATION RATES OF URM STUDENTS IN STEM

The ISR study shows that the "achievement gap" is narrowed substantially for Hispanic and African American students who are participants in CSU-LSAMP and that participant graduation rates have improved over time. Figure 5 compares graduation rates for Hispanic and African American participants with those of non-participants. The average four-year STEM graduation rate of Hispanic CSU-LSAMP participants is 2.1 times higher than that of Hispanic non-participants. Six-year graduation rates of Hispanic participants are 2.0 times higher than Hispanic non-participants. Importantly, for Hispanic participants, six-year graduation rates exceed rates for non-URM comparison groups. The average four-year graduation rate of African American participants is 1.5 times higher than that of African American non-participants. For African American students, the difference widens in the fifth and sixth years. Respectively, five and six-year graduation rates of African American participants are 2.2 and 1.8 times higher than those of African American non-participants. Although average graduation rates for African American participants are lower than for non-URM comparison groups, the gap is much smaller than the gap that exists for African American non-participants. For example, the average six-year STEM graduation rate of African American participants is 15.5% as compared to 22% for non-URM students, while the rate for African American non-participants is 8.4%.
By the beginning of Phase III of CSU-LSAMP, many of the practices that were developed and supported by LSAMP in prior phases had been institutionalized, providing CSU-LSAMP the opportunity to transition from a program that primarily supported lower division students in introductory science classes and pre-transfer activities to a program that provides support for students at all levels and that places an emphasis on engaging upper division students in research and other activities designed to motivate and prepare them for graduate study. This change can be seen in figure 6, which shows the class-level of CSU-LSAMP participants in the final years of Phase II, Phase III, and the Senior Level I project. The class-level of participants in the first year of the current project is also shown. Specifically, in 2002-2003 (the end of Phase II), freshmen and sophomores comprised 62% of participants, whereas they now comprise only 22% of participants.

CSU-LSAMP’s increased emphasis on research and graduate school preparation activities, starting in 2003, is reflected in increases in the number of CSU-LSAMP participants engaged in these types of activities over time (figure 7). The number of students participating in research has more than tripled since the start of Phase III, and has almost doubled over the past five years. The number of students attending conferences has more than tripled since the start of Phase III and almost doubled over the past five years, and the number of students participating in graduate preparedness activities has increased by 50%. Examples of outstanding student researchers can be found in the campus impact statements at the end of this report.

Figure 6: Change in class level of CSU-LSAMP participants

<table>
<thead>
<tr>
<th>Year</th>
<th>Freshmen</th>
<th>Sophomores</th>
<th>Juniors</th>
<th>Seniors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-04</td>
<td>0.09</td>
<td>0.41</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>2008-09</td>
<td>0.08</td>
<td>0.43</td>
<td>0.38</td>
<td>0.11</td>
</tr>
<tr>
<td>2013-14</td>
<td>0.09</td>
<td>0.46</td>
<td>0.30</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Figure 7: Participation in professionalization activities in the first year of Phase III, the first year of Senior Level I, and the first year of Senior Level II.

INCREASING PROGRESSION TO GRADUATE STUDY

In Phase III, Senior Level I, and continuing in Senior Level II, the CSU-LSAMP program began to increase emphasis on serving upper-division students in research and other activities designed to motivate them to pursue graduate study and enhance their competitiveness. The Institute for Social Research (ISR) conducted a detailed analysis of the higher education persistence of students who participated in CSU-LSAMP between 2003 and 2014. Of the 11,291 participants during this period, ISR successfully obtained tracking information for 9,332 students, and the records showed that 6,122 of them (or 65.6%) graduated with a bachelor’s degree. They also found that 43 percent of the graduates (2,652 out of 6,122) with tracking information available either earned a post-baccalaureate degree or are currently enrolled in graduate programs (Table 2).

By applying the graduation rate to the 11,291 Phase III, Senior Level I, and Senior Level II participants, it is estimated that 7,407 students (66%) graduated with a bachelor’s degree. This translates to an estimated 534 Phase III, Senior Level I, and Senior Level II participants who obtained a STEM Master’s degree and 70 who obtained a STEM doctorate degree. It should be noted that many of these participants have not had enough time to complete their doctorate, so it is likely that the number of doctoral degrees will increase in the coming years.

The Institute for Social Research (ISR) conducted a detailed analysis of the higher education persistence of students who participated in CSU-LSAMP between 2003 and 2014. Of the 11,291 participants during this period, ISR successfully obtained tracking information for 9,332 students, and the records showed that 6,122 of them (or 65.6%) graduated with a bachelor’s degree. They also found that 43 percent of the graduates (2,652 out of 6,122) with tracking information available either earned a post-baccalaureate degree or are currently enrolled in graduate programs (Table 2).

By applying the graduation rate to the 11,291 Phase III, Senior Level I, and Senior Level II participants, it is estimated that 7,407 students (66%) graduated with a bachelor’s degree. This translates to an estimated 534 Phase III, Senior Level I, and Senior Level II participants who obtained a STEM Master’s degree and 70 who obtained a STEM doctorate degree. It should be noted that many of these participants have not had enough time to complete their doctorate, so it is likely that the number of doctoral degrees will increase in the coming years.

Table 2: Post-baccalaureate enrollment and degree attainment for Phase III, Senior Level I, and Senior Level II participants.

<table>
<thead>
<tr>
<th></th>
<th>Estimated number of Phase III, Senior Level I, and Senior Level II participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM MASTERS</td>
<td>534</td>
</tr>
<tr>
<td>HEALTH PROFESSIONAL MASTERS</td>
<td>75</td>
</tr>
<tr>
<td>OTHER MASTERS</td>
<td>253</td>
</tr>
<tr>
<td>STEM DOCTORATE</td>
<td>70</td>
</tr>
<tr>
<td>HEALTH PROFESSIONAL DOCTORATE</td>
<td>87</td>
</tr>
<tr>
<td>OTHER DOCTORATE</td>
<td>15</td>
</tr>
<tr>
<td>CURRENTLY ENROLLED</td>
<td>2,274</td>
</tr>
<tr>
<td>NOT CURRENTLY ENROLLED</td>
<td>4,329</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7,638</td>
</tr>
</tbody>
</table>

In Phase III, Senior Level I, and continuing in Senior Level II, the CSU-LSAMP program began to increase emphasis on serving upper-division students in research and other activities designed to motivate them to pursue graduate study and enhance their competitiveness. The Institute for Social Research (ISR) conducted a detailed analysis of the higher education persistence of students who participated in CSU-LSAMP between 2003 and 2014. Of the 11,291 participants during this period, ISR successfully obtained tracking information for 9,332 students, and the records showed that 6,122 of them (or 65.6%) graduated with a bachelor’s degree. They also found that 43 percent of the graduates (2,652 out of 6,122) with tracking information available either earned a post-baccalaureate degree or are currently enrolled in graduate programs (Table 2).

By applying the graduation rate to the 11,291 Phase III, Senior Level I, and Senior Level II participants, it is estimated that 7,407 students (66%) graduated with a bachelor’s degree. This translates to an estimated 534 Phase III, Senior Level I, and Senior Level II participants who obtained a STEM Master’s degree and 70 who obtained a STEM doctorate degree. It should be noted that many of these participants have not had enough time to complete their doctorate, so it is likely that the number of doctoral degrees will increase in the coming years.

The Institute for Social Research (ISR) conducted a detailed analysis of the higher education persistence of students who participated in CSU-LSAMP between 2003 and 2014. Of the 11,291 participants during this period, ISR successfully obtained tracking information for 9,332 students, and the records showed that 6,122 of them (or 65.6%) graduated with a bachelor’s degree. They also found that 43 percent of the graduates (2,652 out of 6,122) with tracking information available either earned a post-baccalaureate degree or are currently enrolled in graduate programs (Table 2).

By applying the graduation rate to the 11,291 Phase III, Senior Level I, and Senior Level II participants, it is estimated that 7,407 students (66%) graduated with a bachelor’s degree. This translates to an estimated 534 Phase III, Senior Level I, and Senior Level II participants who obtained a STEM Master’s degree and 70 who obtained a STEM doctorate degree. It should be noted that many of these participants have not had enough time to complete their doctorate, so it is likely that the number of doctoral degrees will increase in the coming years.

Table 2: Post-baccalaureate enrollment and degree attainment for Phase III, Senior Level I, and Senior Level II participants.

<table>
<thead>
<tr>
<th>Phase III, Senior Level I, and Senior Level II participants for whom tracking information is available</th>
<th>Estimated number of Phase III, Senior Level I, and Senior Level II participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM MASTERS</td>
<td>534</td>
</tr>
<tr>
<td>HEALTH PROFESSIONAL MASTERS</td>
<td>75</td>
</tr>
<tr>
<td>OTHER MASTERS</td>
<td>253</td>
</tr>
<tr>
<td>STEM DOCTORATE</td>
<td>70</td>
</tr>
<tr>
<td>HEALTH PROFESSIONAL DOCTORATE</td>
<td>87</td>
</tr>
<tr>
<td>OTHER DOCTORATE</td>
<td>15</td>
</tr>
<tr>
<td>CURRENTLY ENROLLED</td>
<td>2,274</td>
</tr>
<tr>
<td>NOT CURRENTLY ENROLLED</td>
<td>4,329</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7,638</td>
</tr>
</tbody>
</table>

Source: Longitudinal participant database constructed from WebAMP records matched to CSU ERS records.
We are proud of the fact that a number of former participants in the CSU-LSAMP undergraduate program have gone on to attain doctoral degrees and entered into academia as professors and directors of programs. We interviewed three CSU-LSAMP graduates about their experiences and their advice for current students.

What impact did CSU-LSAMP have on you as a student and/or on your career path?

CZL: The LSAMP Program helped me make better career decisions. It provided a supportive environment where I could be proud of studying biochemistry. Even when my family didn't understand why I spent long hours in a lab or why I spent long hours studying, I had support from friends in LSAMP and the LSAMP coordinator.

EM: I enjoyed and performed rather well in the LSAMP math boot camp to the point that I tested into Calculus I and decided to pursue a degree in mathematics. Without this program, I likely would have not pursued a degree in mathematics.

DA: Participating in the CSULA LSAMP Program had a huge impact on my retention in Science. I had a very difficult time with math and had to take several courses twice in order to pass. I loved Biochemistry and without the tutoring from the LSAMP Program it would have been nearly impossible for me to pass. I love Biochemistry and without the tutoring from the LSAMP Program it would have been nearly impossible for me to pass. I love Biochemistry and without the tutoring from the LSAMP Program it would have been nearly impossible for me to pass. I love Biochemistry and without the tutoring from the LSAMP Program it would have been nearly impossible for me to pass.

What advice do you have for current CSU-LSAMP students?

CZL: To all current CSU-LSAMP Students: Don’t let anyone discourage you from reaching your dreams. You were created with a purpose and this purpose is different from those of your family members. You naturally love the STEM disciplines, so follow what you love. Learn as much as you can and then in time, those family members who were constantly asking “when are you finally going to be done with school?” will be the first ones to brag about your great career!

EM: Make the most of every opportunity available.

DA: Beyond doing the work of a scholar, to have a successful career, it's important to take advantage of every opportunity presented to you and have a mentor (who has walked your path) that you touch base with regularly. The right mentor can be an incredible source of support and insight.

How do you feel CSU-LSAMP contributes to the broadening of participation in STEM?

CZL: LSAMP is critical for retention of our underrepresented minority students. Most of our CSU students come from humble families and are first-generation college students. If they are not first-generation, they are usually first-generation STEM students. Therefore, our students lack the proper educational and career development support structure at home. LSAMP encourages and supports our students so that they can persist in STEM disciplines.

EM: By providing support to students at various stages of their undergraduate studies, such as opportunities for engagement in undergraduate research activities or providing lower division or pre-first year students academic support, CSU-LSAMP is broadening participation in STEM by increasing the persistence, success, and retention of STEM students from underrepresented groups.

DA: As a beneficiary of the LSAMP Program and a former LSAMP Program Director, I know firsthand about the incredible impact the program has on broadening participation across the nation. The LSAMP program levels the playing field for students who come from underrepresented groups by providing resources such as tutoring, professional development, research opportunities, and much more. I believe the CSULA LSAMP Program does an incredible job of preparing students to go beyond the bachelor's and I am forever grateful for the investment the program made in me.
The CSU-LSAMP Global Awareness program led by California State University, Fullerton, emphasizes applied research, intercultural competence, and personal development. This program provides CSU-LSAMP students with a summer research experience working on projects with Thai faculty supervisors and students at Chiang Mai University (CMU) in Northern Thailand. Conducting research in a developing country like Thailand introduces students to new issues such as consideration of cost and availability of modern equipment, which leads them to think more carefully about their experiments and become more conscious of these issues when they return to their home campuses. The warmth of the Thai people leads to an ease in developing cultural awareness and students return with an increased awareness of political, social and economic issues unlike those that they would encounter in the USA or even Europe. The CSU-LSAMP Global Awareness program in Thailand increases the confidence of participants that they can be successful in research and post-baccalaureate programs.

With the start of Phase III in 2008, CSU-LSAMP added international research experiences as one of its objectives. Since then, 267 CSU-LSAMP participants (an average of 43 per year) have had the opportunity to conduct research overseas. We have placed students in research on all continents except for Antarctica.

CSU-LSAMP provides opportunities for students to obtain international research experiences in a number of ways, including participation in international REUs, study abroad programs, and travel with an individual research advisor.

CSU-LSAMP also funds two international experiences per year. Offered by individual campuses, these programs are open to CSU-LSAMP participants from any of our Alliance campuses, providing an opportunity for our students to build a broader network of peers.

The experience of living in a developing nation is invaluable in that the students return with an increased awareness of political, social and economic issues unlike those that they would encounter in the USA or even Europe.

Launched in 2011 and led by California State University Monterey Bay, the CSU-LSAMP Costa Rica program takes place in the rain forest of Volcán Tenorio National Park, the cloud forest of Monteverde, and the coastal environment of the Cabo Blanco Absolute Reserve. Participants are immersed in the rigorous study of tropical environments and biological diversity, statistics and research methods, current issues in conservation, and Costa Rican geography and culture.

Students receive instruction in the development of research questions, fundamentals of experimental design, sampling, hypothesis testing, and the responsible conduct of research. All students present their research at the end of the program and many have gone on to present their work at national conferences.
CSU-LSAMP: Bridge to the Doctorate

To date, the NSF-LSAMP program has supported twelve CSU-LSAMP Bridge to the Doctorate Activities. San Francisco State served as the performance site for cohorts 1 and 4, CSU Northridge for cohorts 7 and 9, and Cal State LA for cohorts 2, 3, 5, 6, 8, 10, 11, and 12.

CSU-LSAMP has consistently found that the BD model it has developed, which provides support at the Masters level, is a highly effective strategy for recruiting, retaining, and advancing talented minority students who otherwise would be unlikely to pursue doctoral level study. CSU-LSAMP BD fellows include students with deficits in their baccalaureate credentials and others with competitive credentials for direct entry into Ph.D. programs, but who were otherwise unable or hesitant to do so. For these students, the Masters-level program truly serves as a “bridge” to doctoral-level study. Graduates of the CSU-LSAMP BD programs have matriculated into Ph.D. programs at some of the top institutions in the nation. Very few, if any, of these students would have been competitive applicants to these programs prior to taking part in the CSU-LSAMP BD program.

A total of 152 students have been participants in CSU-LSAMP BD activities, 143 (94%) of whom were students from historically URM groups. Eighty percent of participants have either earned a Master’s degree or are continuing in Master’s-level study. Of the 128 participants in the completed BD cohorts (cohorts 1-10), fifty percent have either earned a Ph.D. or are currently enrolled in Ph.D. programs. To date, 23 graduates of the CSU-LSAMP BD program have earned a Ph.D. and 4 have earned an M.D. Of these, 11 are continuing in postdoctoral research, 4 have entered the professoriate, and 4 are employed as physicians. Of the 42 BD fellows for whom the Master’s degree was the terminal degree, 76% are employed as STEM professionals.

We are especially proud of the success of the most recently completed cohort at Cal State LA (cohort 10). Of the 12 students who entered the program in 2012, all received an M.S., and 11 have been accepted into Ph.D. programs.

MONICA A. DELGADO MORENO

Monica began her academic career at Cal State LA studying Microbiology. Part of the BD-V cohort, Monica continued her studies at Cal State LA under the guidance of Dr. Nancy McQueen with a research interest in the role of plasmids in antibiotic resistance among A. baumannii clinical isolates. After completing her M.S. in Biology in 2009, Monica was accepted into the UC Davis School of Medicine Ph.D. program in Immunology. Monica received graduate fellowships and NIH Initiative for Maximizing Student Diversity Fellowships and a fellowship from the graduate group in Immunology. She received her Ph.D. in Immunology in 2014 and is currently a Postdoctoral Fellow in the Neurology and Neurological Sciences Department at Stanford University.

VANESSA A. DELGADO

Vanessa began her academic career studying Marine Biology at UCLA. In her third year she received a Smithsonian minority undergraduate research grant to study mechanisms of reproductive isolation in sea urchins at the Smithsonian Tropical Research Institute in Panama. She was accepted into the Master’s program in Biology and BD Cohort III at Cal State Los Angeles to further pursue training in evolutionary biology and systematics with Dr. Patrick Krug. Toward the end of her thesis research, she received another research grant to study the evolution of bioluminescence in Caribbean members of the Cypridinidae (Myodocopida) at the Smithsonian Tropical Research Institute in Panama. After completing her MS degree in 2007, she entered the doctoral program at Harvard University, funded by the Graduate School of Arts and Sciences Graduate Student Fellowship, and earned her Ph.D. in 2013. Currently, Vanessa is a Research Bioinformatician, with the Global Genome Initiative at the Smithsonian National Museum of Natural History.

COREY BAKER

Corey began his engineering studies at San Jose State University where he received the Hewlett Packard Scholarship. Corey entered the Master of Science program in Electrical Engineering at Cal State, Los Angeles in 2008 and joined BD Cohort VI. During his first year at Cal State Los Angeles, Corey served as Regional Chairperson for the National Society of Black Engineers. He also began to conduct research with Dr. Deborah Won at Cal State Los Angeles and worked on a separate project with Dr. Francisco Valero-Cuevas at the University of Southern California. Corey’s work with Dr. Won focused on neuron simulation data in matlab and varied tuning widths and angles of sorted and non-sorted populations to compare information loss. His thesis work with Dr. Valero-Cuevas is titled, “Design and Implementation of a Non-Linear Dynamical System Replicating Spring Backing Behavior,” focused on taking a linear motor and making it have non-linear behavior. The motor is to be used in place of a spring in Dr. Valero-Cuevas’ research to replicate the edge of instability of the nervous system. Corey earned his Ph.D. in Electrical Engineering at the University of Florida in 2015. He was a GEM Fellow and Intel Scholar, and was part of the Wireless Information Networking Group under the guidance of Dr. Janice McNair. Currently, Corey is a UC President’s Postdoctoral Fellow at the University of California, San Diego, Jacobs School of Engineering.

HENRY P. A. MARTINEZ

Paul participated in an NSF REU program at Cal State, Los Angeles when he was a student at Glendale Community College. He transferred to Cal State Los Angeles, and continued his undergraduate research in Dr. Carlos Gutierrez’ lab, working on synthesizing derivatives of the siderophore enterobactin as part of an effort to understand iron sequestration and transport by E. coli. In 2005, Paul was admitted to the MS Program and BD Cohort II at Cal State Los Angeles, where he continued to work in Dr. Gutierrez’ lab. Paul completed his MS in 2007, and was admitted to the Chemistry Ph.D. program at University of California, San Diego, where he joined Professor William Trogler’s research group. His doctoral research, which was supported by NSF-AGEP and NCI-ET CURE fellowships, focused on new inorganic materials for chemical biological and environmental sensing. He has already published some of his graduate work, including a study on an ultrasound contrast marker for breast cancer, which was featured as the cover story of the journal Med. Chem. Commun. 2010 1, 266–270. Paul completed his doctorate in 2011, and currently is in a postdoctoral appointment at the Lawrence Livermore National Laboratories where he works on the development of sensors.
CSU-LSAMP: LEADERSHIP

PRINCIPAL INVESTIGATOR
Federika Harmsen, Ph.D.
Provost and Vice-President for Academic Affairs

Co-PI, LEAD PROJECT DIRECTOR
Lisa Hammersley, Ph.D.
Professor of Geology
hammersley@csus.edu
916-278-3838

Co-PI, ASSOCIATE PROJECT DIRECTOR
Scott Farrand, Ph.D.
Professor of Mathematics
farrand@csus.edu
916-278-6129

Co-PI
Jill Trainer, Ph.D.
Dean, College of Natural Science & Mathematics
jill.trainer@csus.edu
916-278-4655

CSU-LSAMP: STATEWIDE OFFICE

PROJECT MANAGER
Nicole Campos
campos@csus.edu
916-278-3845

ADMINISTRATIVE ASSISTANT
Camanch Camacho
camacho@csus.edu
916-278-3838

CSU-LSAMP: PROGRAM OVERSIGHT COMMITTEE

Sam Brannen, Ph.D.
Professor of Mathematics
Sonoma State University
707-664-2591
brannan@sonoma.edu

Lilia DelaCerda, M.PH.
Coordinator/Director,
CSU LSAMP
California State University,
Fresno
559-278-4748
lilad@csufresno.edu

Christina Goode, Ph.D.
Professor of Biochemistry
California State University,
Fullerton
657-278-4338
cgoode@fullerton.edu

Margaret Jefferson, Ph.D.
Professor of Biological Sciences
California State University,
Los Angeles
323-343-2059
mjeffer@calstatela.edu

Estralita Martin, Ph.D.
Assistant Dean for Student Affairs
College of Sciences
Director of CASA
San Diego State University
(619) 594-4009
esmartin@mail.sdsu.edu
In a state as diverse as California, it’s no surprise that each campus of the California State University system is unique in terms of the makeup and needs of its student body. Campuses range widely in size from a student body of just 1,200 at CSU Maritime Academy to almost 39,000 students at CSU Fullerton. The California State University serves both large metropolitan areas such as Los Angeles and San Francisco, and rural areas such as Stanislaus and Humboldt counties. Eighteen of the 23 campuses in the system are designated as Hispanic Serving Institutions. The CSU-LSAMP Alliance is designed so that each campus can provide a set of activities that best serves the needs of its students while maintaining the central mission of broadening participation in STEM. The success and unique character of each of the individual campus LSAMP programs is due to the dedication and hard work of a team of LSAMP campus coordinators. Each campus coordinator has provided a statement of the impact of LSAMP on their campus. These statements are included in the following pages alongside the profiles of 2015 CSU-LSAMP PROUD scholars from each campus.

IMPACT STATEMENTS

California State University, Bakersfield

IMPACT OF LSAMP

CSU Bakersfield has been a member of the CSU-LSAMP Alliance since its inception in 1994. One of the early accomplishments of the CSU Bakersfield LSAMP program was the development of academic excellence workshops (1-unit supplementary course) attached to each of the pre-calculus and calculus courses offered by the campus. These workshops have proven to be highly effective in improving student success not only in pre-calculus, but also in subsequent calculus courses. Due to its successes in helping students complete the pre-calculus and calculus sequence, the mathematics department began funding this course. During the more recent project periods, the LSAMP program at CSU Bakersfield has contributed greatly to expanding opportunities for undergraduate participation in STEM research on the campus. For example, this year, the LSAMP program at CSU Bakersfield has sent 7 students to graduate school, 2 of whom entered doctoral programs.

IMPACT OF LSAMP

OUTSTANDING RESEARCH & SERVICE/LEADERSHIP

IMELDA IBARRA • BIOLOGY

Imelda Ibarra is a Biology major with a concentration in Chemistry. For the past three years, Imelda has been on Professor Kathleen Szick’s research team where they have been investigating cutaneous bacteria from Pseudacris regilla, which inhibits growth of amphibian and human fungal pathogens. Preliminary results of her work suggest that the bacterial isolates inhibit at least one of pathogens used in this study. As she continues her research, she aims to conserve the amphibian population and potentially create new antifungal antibiotics. Imelda has presented her research at various research conferences, such as the CSU Program for Education and Research in Biotechnology, and the Emerging Researchers National (ERN) Conference in STEM.

In addition to her research activity and coursework, Imelda has also contributed to her field by participating in the Global Brigades club at CSU Bakersfield, where she had the privilege of participating in three humanitarian trips abroad. Throughout the school year, she participates in school fundraisers to collect supplies and medications needed to provide the underserved communities of Honduras, Ghana, and Panama with free health care. As a way to motivate high school students to pursue the sciences, Imelda also worked as a student assistant for the CSUB REVUS-UP summer program, a program designed to expose high school students to various scientific projects.

Overall, Imelda is a well-rounded student that plans to apply to a clinical laboratory science program and work with a clinical scientist while she awaits acceptance into a graduate program.

OUTSTANDING RESEARCH & SERVICE/LEADERSHIP

ALINA MITINA • BIOLOGY

Alina combines a top-rate intellect with a passion for learning, an exceptionally positive personality, and impressive work ethic and motivation. She embraces the CSU Channel Islands CSU-LSAMP cohort model and the wider CI community ethic: mentoring younger students, volunteering to share her love of science and higher education at events, helping classmates with their work, and encouraging all through action and example. Her campus activities include serving a founding Peer Leader, as president of the Free Radicals (Chemistry Club) and the Mortar Board.

Alina, a Biology major and Chemistry minor, excels in research and academics. She earned a 3.98 GPA in a heavy STEM course load while winning prestigious scholarships. Her research engagement spans three summers and two academic-year research groups, including two prestigious NSF Research Experiences for Undergraduates. She explored diffusive transport of a small fluorescent solute into Candida Albicans biofilms at University of New Mexico’s School of Medicine in 2013. In 2014, she joined a research group at the Albert Einstein College of Medicine, where she investigated protein-protein interaction between HIV-1 IN and SWI/SNF INI-1. She has presented at multiple conferences and is a co-author on one publication in preparation.

Alina speaks of always having goals, and always learning. Her next goal involves earning an M.D./Ph.D. in biochemistry and pursuing research in the biomedical sciences.

IMPACT OF LSAMP

In the past few years CI-LSAMP has intentionally developed a strong cohort model: activities encourage students to support and encourage one another as they learn more about and prepare to succeed in graduate studies in STEM. CI-LSAMP seeks to identify talented STEM students facing educational barriers who should be encouraged to pursue graduate education. The size of the program is small so as to allow for intensive mentoring. Additionally, each LSAMP student participates in a significant faculty-mentored research project before graduating. CI-LSAMP has taken a leading role in creating events building the student research culture at CI. For instance, LSAMP developed the now annual Fall Student Summer Research Showcase, which celebrates students returning from away-from-CI paid summer research opportunities (typically Research Experiences for Undergraduates) and encourages other students to pursue similar opportunities: the third SSRS had over 80 participants. LSAMP also hosts ad hoc events such as Sí se puede, in which four Latina recent graduates of CI-LSAMP led a panel discussion about their experiences.

In the past few years CI-LSAMP has intentionally developed a strong cohort model: activities encourage students to support and encourage one another as they learn more about and prepare to succeed in graduate studies in STEM. CI-LSAMP seeks to identify talented STEM students facing educational barriers who should be encouraged to pursue graduate education. The size of the program is small so as to allow for intensive mentoring. Additionally, each LSAMP student participates in a significant faculty-mentored research project before graduating. CI-LSAMP has taken a leading role in creating events building the student research culture at CI. For instance, LSAMP developed the now annual Fall Student Summer Research Showcase, which celebrates students returning from away-from-CI paid summer research opportunities (typically Research Experiences for Undergraduates) and encourages other students to pursue similar opportunities: the third SSRS had over 80 participants. LSAMP also hosts ad hoc events such as Sí se puede, in which four Latina recent graduates of CI-LSAMP led a panel discussion about their experiences.
OUTSTANDING ACADEMIC
HENRY SANCHEZ • MECHANICAL & MECHATRONIC ENGINEERING

Henry is the eldest of four children to a single mother. He excelled in elementary and high school, especially science and mathematics. He was very curious about how things work. He was always taking things apart to find out more. In eighth grade, he wrote a paper on aerospace engineering. A friend of his helped him apply to college and the CSU-LSAMP Summer Calculus Boot Camp (SCBC). He attributes the SCBC with helping him develop a strong work ethic.

Before college, he thought that Mechanical Engineering was about cars and mechanics. He was thrilled to find out that it was much more. He also learned about Mechatronics through a fellow SCBC participant. He has had many leadership roles including chair of LYT academics, a coordinator of MESA days, and co-leader for Energy in the local Blitz Build, a charity event sponsored by the Engineering College to build rehabilitation housing. He was a Calculus II and III Academic Excellence Workshop facilitator, tutor for MESA, and reaches out to volunteer his time to tutor needy students.

Henry is looking forward to graduate studies and hopes that his research in wind-driven power systems with Dr. Alexander in the Mechanical Engineering Department will make him attractive to graduate schools. He is a leader for the Chico team in the Collegiate Wind Competition sponsored by the U. S. Department of Energy.

IMPACT OF LSAMP

The California State University, Chico, Louis Stokes Alliance for Minority Participation is part of the CSU LSAMP program promoting an increase in the number of minority students awarded bachelor’s degrees in science, technology, engineering, and mathematics (STEM). Additionally, we promote their pursuit of postgraduate degrees. Our emphasis is in strengthening problem-solving skills and building proficiency in all academic areas. CSU Chico LSAMP is funded by CSU Chico, the College of Engineering, the College of Natural Sciences, the National Science Foundation, under cooperative agreement number HRD 1302673, and the CSU Chancellor’s office.

Our goal is academic excellence through creating pathways to success for all our participants. We look for students who are excited by the prospect of contributing to the fields of science, technology, engineering, and mathematics. Students primarily enter our program through the annual Summer Calculus Boot Camp. We support students with texts, supplies, research opportunities, awards, graduate school preparation, and workshops for college credit.

DOMINGUEZ HILLS HAS A HIGH PERCENTAGE OF SOCIOEconomically disadvantaged students, meaning that the resources of LSAMP are in great demand at the Dominguez Hills CSU campus. STEM students are introduced early to LSAMP resources through the academic excellence workshops in core STEM courses facilitated by upper-level STEM students, as well as through the annual LSAMP open house event. Upper-level STEM students who have decided to pursue graduate work are supported by LSAMP for research projects with faculty, international summer research projects, and conference attendance and participation. Research has included laboratory-based, theoretical and field research.

CSUDH international programs include a very popular one in ecological research at the La Selva Biological Station in Costa Rica, as well as a more recently added program in Australia. LSAMP students from CSUDH have presented their work at conferences, and several have published their work in internationally recognized, peer-reviewed journals. The LSAMP program at CSUDH has also supported activities designed to assist students interested in attending graduate school. These include a GRE workshop, and a graduate school workshop where an expert professional leads the students through the mechanism of applying to graduate school and maximizing one’s chance of gaining admission.

OUTSTANDING ALUMNUS
JAIME PEREZ

Jaime Perez transferred to CSU Dominguez Hills in Fall 2011 from Riverside Community College as an Ecology and Environmental Science major. Jaime comes from a traditional Mexican family, in which higher education was not a priority. Consequently, Jaime had to work to support himself financially. Despite these obstacles, Jaime performed exceptionally well in his classes and succeeded in graduating in Fall 2013.

During his time at Dominguez Hills, Jaime became interested in research and obtained more information through his advisors where he learned about international research opportunities that were offered through the Biology Department and the CSU-LSAMP Program. He conducted research in tropical biology and community ecology while an undergraduate. With the support of CSU-LSAMP, he conducted research during the Summer of 2013 at La Selva Biological Station in Costa Rica, in the laboratory of Dr. Terry McGlynn. Jaime conducted experiments to understand and predict how litter-dwelling ants in tropical rainforests are responding to changing light and temperature regimes in association with climate change. The following year, he was supported by a National Science Foundation international research experience grant to conduct research in an Australian government laboratory, in Darwin, to study how fire and carbon management affects biodiversity. He is now a Ph.D. student in Biology at Case Western Reserve University in Ohio, researching community ecology in the laboratory of Dr. Sarah Diamond. In March of 2015, Jaime was announced as a recipient of the 2015 National Science Foundation Graduate Research Fellowship.
A t California State University East Bay, the focus of the LSAMP program has been to support faculty mentored student research in STEM fields. Our program provides financial resources to students, many of whom would be unable to continue in school without that support. In addition, LSAMP provides students with funding to support their research as well as travel grants to professional conferences. This activity allows students to put their academic studies to practice in the research laboratory or field and provides access to the scientific method in a meaningful and contributory way. Our focus on student research provides opportunities to work closely with a faculty research mentor. This in turn encourages a strong and supportive mentor-mentee relationship to be forged. LSAMP students are provided opportunities to author and present findings at professional conferences and gain entrance into scientific and professional communities. Combined, these opportunities and experiences provide a strong STEM foundation to LSAMP students. It is expected that this activity will increase retention and graduation rates, support increased student academic achievement, and result in a greater proportion of students that pursue graduate studies.

OUTSTANDING RESEARCH & SERVICE/LEADERSHIP

ARACELY COBOS • PHYSICS

Aracely Cobos has been interested in Mathematics since high school, but with her first physics course she realized that physics was the ideal discipline for her, blending science and math. Currently, Aracely is a sophomore Physics major at CSU East Bay. Under the direction of Dr. Jennie Guzman, who is her CSU-LSAMP faculty research mentor, Aracely is studying atomic physics. Dr. Guzman says that Aracely is a fantastic student both in class and in the lab. Aracely is helping to construct a magneto-optical trap for strontium atoms to test the Spin-Statistic theorem. She believes that her participation in research has helped to connect the concepts she is learning in her classes and is preparing her for graduate studies. Aracely plans to pursue a career in education or research in atomic physics and optics.

Aracely is very active in her community and volunteers for the Hayward Chamber of Commerce. She credits her volunteer work with helping her to find her voice, network in the community, and an ability to connect with others. In High School, Aracely had an assignment where she had to write about a Latina role model in physics and found that there were very few women (especially Latina) in Physics. Now, looking for Latina role models in physics has become a personal interest. As she has begun to take more advanced courses, she finds that she is one of few women studying physics at the University. She hopes to encourage and empower other women to pursue STEM careers.

OUTSTANDING RESEARCH & SERVICE/LEADERSHIP

ATAHUALPA CONTRERAS • BIOLOGY

Atahualpa Contreras is an undergraduate student pursuing a B.S. in Biology at Fresno State. A first generation college student, Atahualpa spent countless hours working in the agricultural fields of central California, which fueled his determination to attain a college education. After joining LSAMP, Atahualpa participated in the CSU-LSAMP Monterey Bay summer research experience in Costa Rica. There he studied soil characteristics of trails at Volcán Tenorio, a national park, to determine whether tourism along the main hiking trail toward Rio Celeste had an impact on the soil conditions. He presented his summer research at the 2014 Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) National Conference.

With the support of CSU-LSAMP, he is conducting research on campus under the mentorship of Dr. Joseph Ross in a Genetics and Developmental biology laboratory utilizing Caenorhabditis briggsae. His research is focusing on hybrid developmental delay utilizing AF16 strain from Japan and HK104 strain from India. In addition to research, Atahualpa has been very involved in CSU-LSAMP, including serving on student panels encouraging students to participate in international research and serves as a program peer mentor to lower division students. He plays an active role in the Fresno State SACNAS chapter and Biology Club which includes visiting local elementary schools providing hands-on science demonstrations to encourage young students to pursue STEM fields. Atahualpa aspires to pursue a Ph.D. in Biology with an emphasis in genetics and continue his career in academia.
HUMBOLDT STATE UNIVERSITY

IMPACT OF LSAMP

Humboldt State University has been a member of the CSU-LSAMP Alliance since its inception in 1994. One of the early accomplishments of HSU LSAMP was the development of supplemental instructional courses (SIs) offered to underrepresented and all students. After noting the increase in URM-STEM student achievement as a result of the supplemental and peer instruction students receive during the semester, HSU institutionalized the offering and financial support of SIs, and has continued to expand the number of sections offered each year in order to accommodate growing student need. Since early 2011, the CSU-LSAMP program at Humboldt State University has joined forces with the Indian National Resource Science and Engineering Program (INRSEP). Through HSU-LSAMP, INRSEP has been able to expand its academic support services. While the program maintains a focus on American Indian students, it now offers academic and research support to all underrepresented, low income, and historically disadvantaged students in STEM disciplines at HSU. The LSAMP program helps INRSEP to execute its key mission—to serve students by connecting them to research opportunities and STEM networks, providing academic and career counseling, assisting with entrance into graduate programs, and fostering an inclusive and supportive learning community within the INRSEP house.

OUTSTANDING RESEARCH
JILMA RACHEL GUINEA • WILDLIFE BIOLOGY

Jilma Rachel Guinea is a first generation college student, single parent, and Marine Corps Veteran who’s pursuing a higher education to provide a better life for her son. She’s an undergraduate at HSU majoring in Wildlife Conservation Biology/Applied Vertebrate Ecology.

In the summer of 2014, she participated in an NSF Research Experience for Undergraduates at the Raptor Research Center in Boise State University. Under Dr. David Anderson’s guidance, she focused her research on forest attributes that Harpy Eagles select when choosing breeding habitats. Based on literature research, she drafted research hypotheses and proposed analytical methods. Rachel traveled to Panama’s Darien rainforest, an area known for its rich biodiversity. She presented the results of this research at two local and two national conferences. At the October 2014 Society for Advancing Chicanos and Native Americans in Science (SACNAS) Conference, Rachel received an award for Outstanding Poster Presentation in Ecology/Evolution.

In summer 2015, Rachel participated in the San Diego Zoo’s Institute for Conservation Research fellowship program. As part of the Institute’s Applied Animal Ecology Division, under Dr. Jeanette Boylan’s mentorship, Rachel conducted a study examining the effects of human disturbances on threatened Western Snowy Plovers. Rachel will present her research at SACNAS in October and will pursue an article publication.

Rachel’s future path will lead her to graduate school to pursue a graduate degree in Wildlife Ecology. With her unique life experiences, she also wants to become a mentor because she has a special potential to touch the lives of many people.
Impact of LSAMP

California State University, Long Beach, has been a member of the CSU-LSAMP Alliance since spring 1994. As the program has changed and grown, one of the commitments of CSULB to the LSAMP program is the development of partnerships with different entities on campus. Although housed in the College of Natural Sciences & Mathematics, the LSAMP program has worked to create open lines of communication for recruitment in the College of Engineering, which houses Engineering and Computer Science/Engineering majors. CSULB-LSAMP has also partnered with the Geology Diversity Enhancement Program (GDEP), which has hosted LSAMP participants on field trips to Southern California locales to enhance classroom learning with real-world application. In recent years, increased focus on development of research experiences on campus has led to both a broadening of research participation and increased partnering with research based programs, such as the NIH-funded Bridges to the Baccalaureate and Maximizing Access to Research Careers (MARC U*STAR) on campus. Over the last 5 years, CSULB-LSAMP has taken students to ABRCMS, ERN, and SACNAS as part of an on-going effort to increase research experiences for our students. In addition, CSULB hopes to further increase the development of student-specific programming.

Outstanding Alumnus
Hector Gomez
Chemical Engineering

Hector Gomez was part of the CSU-LSAMP undergraduate program at California State University, Long Beach and graduated with a B.S. in Chemical Engineering in May 2014. He conducted research in Dr. Mendez’s lab, working with Dye-Sensitized Solar Cells. He was also a Promoter of STEM for the HSI-STEM Program for two years where he tutored and mentored undergraduate STEM students. Through his research and involvement with HSI-STEM, he was able to present his work at conferences including the Great Minds in STEM Conference and the Society of Hispanic Engineers National Conference. Upon graduation from CSULB, Hector received the CSU-LSAMP Bridge to the Doctorate (BD) Program Fellowship. He is currently attending California State University, Los Angeles as a BD Fellow, pursuing an M.S. in Mechanical Engineering. He is doing research in the Thermo-fluids lab where he is developing an optimal fuel cell configuration via mathematical modeling, finite element analysis (COMSOL Multiphysics), and optimization algorithms under Dr. Pacheco. Besides his academic and research, he assisted the Mechanical Engineering Department with programs, such as Preview Day, where he presented his work and encouraged incoming students to get involved in research and pursue a career in STEM.

Outstanding Alumna
Maritza Sanchez
Mechanical Engineering

Maritza Sanchez joined CSU-LSAMP in Fall 2013 when she transferred from UCSB. In the year-long LSAMP Undergraduate Research Training Program, she focused in the laboratory of Dr. David Raymond on the development of a valid model for fracture formations in bones to aid forensic scientists on clearly diagnosing a cause. She participated in a 10-week research internship at UCSB in the laboratory of Dr. Carlos Levi, where she investigated the toughness of various compositions used for thermal barrier coatings on gas turbines and jet engines. In Summer 2014, she received an REU fellowship from Princeton University to conduct research in the laboratory of Dr. Jay Benziger, where she focused on understanding the physics behind water formation and movement in polymer electrolyte membrane fuel cells. She was accepted into the Northwestern University Materials Research Science & Engineering Center REU Program for Summer 2015. Maritza has presented her various research projects at several national conferences. Maritza has maintained an overall GPA of 3.572 and a major GPA of 3.867, leading to scholarships and memberships in various honor societies. Her leadership and community outreach roles are demonstrated through her involvement with the Society of Hispanic Professional Engineers (SHPE). Every year she has participated in Noche De Ciencias, a program that teaches younger students about the STEM fields. Currently Maritza serves as the Region 3 Regional Student Representative (R3SR) for SHPE. Her role as R3SR is to oversee all the undergraduate SHPE chapters in southern California, Arizona, and southern Nevada.
OUTSTANDING ACADEMIC & SERVICE/LEADERSHIP
PHILIP HATCHETT
MECHANICAL ENGINEERING

Philip Hatchett is a Junior working towards his B.S. degree in Mechanical Engineering at CSU Maritime Academy, while also being a part of the inaugural cycle of students working towards a newly offered minor in Mathematics. Philip carries one of the highest GPAs in the LSAMP program, and has produced at the highest level throughout his engineering studies. He has proven to be a leader in the growing LSAMP program and has learned to be successful in the classroom by working with others in forming study groups for his higher-division engineering and math courses.

Philip gives back to the community in many ways, but has primarily dedicated himself to volunteer work through the CSU Maritime Academy Office of Community Engagement. He has earned multiple service ribbons and awards for his dedication and efforts to serve the community. Some of his many volunteer efforts have included mentoring elementary school children in an after-school program, participating in campus clean-up and beautification initiatives for the campus’ waterfront, and helping out at a Vallejo community garden. He has shown especially enthusiastic dedication to Rebuilding Together Solano County, a non-profit that renovates homes for low-income veterans and seniors.

CSU Maritime Academy is proud to recognize Philip as a CSU-LSAMP PROUD Scholar for his academic achievements in challenging STEM coursework throughout his undergraduate career, and for his profound impact on serving the campus and surrounding community through volunteer work, community engagement and academic outreach.

IMPACT OF LSAMP

CSU Maritime Academy joined the CSU-LSAMP Alliance in 2013, representing the final campus of the entire CSU to participate in LSAMP. In the few years since establishing a CSU-LSAMP presence on campus, the program has grown to more than 30 students in each of the last two years. Theogams in engineering and marine transportation require strong academic support and mentoring, a major goal of CSU-LSAMP activities at Cal Maritime. In our brief history, we have graduated several students who joined the program as upperclassmen, going on to lucrative and rewarding engineering careers in support of senior designed projects required as a capstone to their degree programs. CSU-LSAMP will continue to grow and further help maintain Cal Maritime’s superior job-placement rate in STEM fields and provide support for students seeking careers in marine transportation and engineering.

OUTSTANDING RESEARCH
EMILY KING • MARINE SCIENCE

Emily King’s ultimate academic goal is to pursue a doctoral degree in animal physiology, focusing on the direct effects of environmental variables on changes in gene expression. As a Marine Science major at CSUMB, she has excelled both academically, maintaining a 3.9 GPA, and in the development of several undergraduate research projects. Emily has been exceptionally successful at securing highly competitive research experiences that have allowed her to pursue her deep curiosity about how environmental change can impact the physiology of marine organisms. She cites her pivotal experience as a Duke University Marine Science and Conservation Scholar in 2014 as one of the many opportunities that helped her identify this passion for animal physiology. At Duke, Emily investigated the physiological response of fiddler crabs to changes in oxygen availability. Soon after, she traveled to Oregon State to conduct research into the role of physiological condition as a driver of larval flatfish settlement, which further solidified her interest in investigating the physiological responses to change. In Summer 2015, Emily continued to explore her interest in gene expression experimental techniques and made connections with potential graduate advisors while working with Dr. Jonathan Stillman of San Francisco State University and UC Berkeley, where she hopes to complete her doctoral studies. Emily has presented the products of these research collaborations at multiple research symposia, including SACNAS and the Association for the Sciences of Limnology and Oceanography (ASLO) international conference in Granada, Spain, receiving top honors for both presentations.

IMPACT OF LSAMP

CSU Monterey Bay joined CSU-LSAMP in 2004. From the outset, the program received tremendous support from faculty and campus administrators, and has had a lasting impact on STEM programs. The much-needed financial and programmatic support of STEM achievement and retention planted the seed for similar, grant-funded projects and STEM services in tutoring, course support, research, and internships. LSAMP’s emphasis on graduate school preparation and undergraduate research has been particularly transformative for CSUMB. The program led to increased faculty support of undergraduate research and spurred development of a graduate school preparation curriculum and workshops. The number of students going on to STEM graduate programs at institutions such as the University of California, Los Angeles and Texas A&M University has increased. Ultimately, the LSAMP program, together with other campus developments, led to the launch, in 2009, of the Undergraduate Research Opportunities Center (UROC), which is the first centralized undergraduate research office in the 23-campus California State University system. CSUMB continues to institutionalize LSAMP program elements through efforts such as the NSF-funded Council on Undergraduate Research Workshop on Institutionalizing Undergraduate Research for State Systems and Consortia.
OUTSTANDING SERVICE/LEADERSHIP
MICHAEL PEREZ
MECHANICAL ENGINEERING

Michael Perez served as the President for the Society of Hispanic Professional Engineers (SHPE) student club. He was also President of Sigma Lambda Beta and a Tau Beta Pi initiate. His extracurricular activities also included being a cast member for TAKE XXIII, a CSUN freshman orientation performance to increase awareness of diversity and curb prejudice. He was a Salsa Libre performer for 2 years and a Competitor (1 year), and he was on a 1st place regional college congress team.

Michael was awarded the C.R. and Ila Johnson Memorial Endowed Scholarship for Engineering Education. His senior design was the Human Powered Vehicle and he held the roles of Components lead and Assembly and Fabrication lead on a team that placed 6th overall, out of 36 schools. He was also part of a team which earned a Senior Design award.

Michael graduated Spring, 2015 and had multiple interviews for jobs. He was offered a position as a Petroleum Engineer in New Mexico, but instead accepted a position at Esterline Mason, Control Systems as a Mechanical Design Engineer.

IMPACT OF LSAMP

LSAMP at Cal State Northridge has evolved and adapted to the unique needs of a changing population. It has grown to match the sharp increase of student enrollment in STEM majors and the accompanying growth in the diversity of the campus population. LSAMP has provided specialized programs and activities to engage and support historically underserved students and to help close the achievement gap in STEM. Activities include Academic Excellence Workshops and other activities fostering research and professional development, such as organizing conferences. CSUN-LSAMP encourages students to gain research experience under the mentorship of individual faculty members and to present work at national scientific conferences. Students have been supported at every level, from freshmen orientation by LSAMP mentors, to specialized advisement and tutoring, and finally graduate school and career preparation.

OUTSTANDING ACADEMIC
ELIZA HERNANDEZ • BIOLOGICAL SCIENCES

Eliza Hernandez was a Biological Sciences major with an Option in Zoology and a minor in Chemistry at Cal Poly Pomona. She graduated in Spring 2015 with a 3.88 GPA. Her interest in environmental science has evolved throughout her undergraduate career by providing multiple aspects of support under one comprehensive umbrella.

Eliza engaged in various undergraduate research experiences that focused on studying human impacts on local ecosystems. As an Environmental Toxicology Intern, Eliza had the opportunity to participate in research at the Pacific Coast Environmental Conservancy (PCEC) at CSU Long Beach under Jesus Reyes. She investigated and quantified chemical contamination in local marine habitats, as well as in resident organisms. After her internship, she continued to conduct research at Cal Poly Pomona that focused on nitrogen deposition, an anthropogenic impact unique to Southern California. Working with her research mentor, Dr. Erin Questad, she studied the effects of nitrogen deposition on arthropod communities and investigated how the deposition affected the litter decomposition of a native California grass versus that of an invasive grass. She performed research with the help of the SEES Research Apprentice Program funded by the Hearst Foundation, the Ronald E. McNair Scholars Program, and the Ernest Prete Jr. Environmental Science Student Research Fellowship. Winner of the prestigious Dr. Paul C. Hiemenz Scholarship, she was honored at the Hilda Solis Scholarship Dinner & Reception.

IMPACT OF LSAMP

Science Educational Enhancement Services (SEES) and Maximizing Engineering Potential (MEP) programs serve as the backbone of the LSAMP program at Cal Poly Pomona. LSAMP is a preparation, support and engagement program serving historically under-represented minority (URM) students in the STEM fields. It was established in 1994 to increase the retention and the number of URM students graduating from Cal Poly Pomona with degrees in the sciences and engineering. Currently, the program serves 300+ students.

The program maintains a support structure comprised of various components, each of which address a barrier to success in college. LSAMP services include special faculty advisors, a peer mentoring program and a faculty-alumni-student mentoring program, paid fellowships for performing research with faculty, conference travel support, a science First Year Experience course for freshmen, Academic Excellence Workshops for high fail-rate classes, professional development workshops all year long, textbook loan library for lower and upper division STEM courses, a computer lab, community rooms, and socials throughout the year. All of these services have facilitated the success and retention of URM students within the sciences and engineering by providing multiple aspects of support under one umbrella.
A child of migrant farmworkers, Eric grew up picking fruit in the fields of northern California with his family members. Coming from a background of poverty and hard work, he has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.

Eric has served on the Sacramento County Planning Commission for five years, including two years as chair. He is president of the Sacramento State Alumni Association. Most recently, Eric was elected to the Sacramento City Council, representing the neighborhood he has lived in since his days as a college student. He has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.

Eric has served on the Sacramento County Planning Commission for five years, including two years as chair. He is president of the Sacramento State Alumni Association. Most recently, Eric was elected to the Sacramento City Council, representing the neighborhood he has lived in since his days as a college student. He has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.

Eric has served on the Sacramento County Planning Commission for five years, including two years as chair. He is president of the Sacramento State Alumni Association. Most recently, Eric was elected to the Sacramento City Council, representing the neighborhood he has lived in since his days as a college student. He has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.

Eric has served on the Sacramento County Planning Commission for five years, including two years as chair. He is president of the Sacramento State Alumni Association. Most recently, Eric was elected to the Sacramento City Council, representing the neighborhood he has lived in since his days as a college student. He has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.

Eric has served on the Sacramento County Planning Commission for five years, including two years as chair. He is president of the Sacramento State Alumni Association. Most recently, Eric was elected to the Sacramento City Council, representing the neighborhood he has lived in since his days as a college student. He has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.

Eric has served on the Sacramento County Planning Commission for five years, including two years as chair. He is president of the Sacramento State Alumni Association. Most recently, Eric was elected to the Sacramento City Council, representing the neighborhood he has lived in since his days as a college student. He has been devoted to improving opportunities for others through a life of public service. While excelling as an engineering student, he was elected President of the Associated Students of Sacramento State, and also served as student trustee to the California State University. After graduating with a degree in electrical and electronic engineering, Eric entered the Assembly Fellows Program, which placed him as a staff member in the office of a California legislator. He earned a master’s degree in Public Policy and Administration in 2008, and has served as staff, and chief of staff, for assembly members who share his values. He has put his background in electrical engineering to good use, working on legislation that advances alternative energy solutions. He wrote the landmark California Dream Act while working for Assemblyman Gil Cedillo, which has dramatically improved the quality of life for countless Californians.
Alicia Zamudio Montes de Oca graduated summa cum laude in 2015 with a B.A. in both Biology and Psychology. She was selected as the outstanding graduate in the department of biology. Through her participation in CSU-LSAMP and the Institute for Maximizing Student Development (IMSD) programs, Alicia began conducting research in the Cell & Molecular Biology laboratory of Dr. Ralph Feurer. Alicia became more involved in neuroscience and added a double major in biology. Alicia continued to conduct research in the Feurer lab and, in the summer of 2013, was selected as an intern at Massachusetts Institute of Technology in the Picower Institute for Learning and Memory. MIT researchers were so impressed with Alicia they asked her to return as a visiting student for spring and summer 2014. After returning to SDSU, Alicia was accepted into the prestigious SDSU Stem Cell Internship Program where she joined the lab of Dr. Jing Zhao at Sanford-Burnham Medical Research Institute. Throughout these research experiences, Alicia has had over ten research presentations, one submitted publication, and one in preparation.

Alicia Zamudio Montes de Oca graduated summa cum laude in 2015 with a B.A. in both Biology and Psychology. She was selected as the outstanding graduate in the department of biology. Through her participation in CSU-LSAMP and the Institute for Maximizing Student Development (IMSD) programs, Alicia began conducting research in the Cell & Molecular Biology laboratory of Dr. Ralph Feurer. Alicia became more involved in neuroscience and added a double major in biology. Alicia continued to conduct research in the Feurer lab and, in the summer of 2013, was selected as an intern at Massachusetts Institute of Technology in the Picower Institute for Learning and Memory. MIT researchers were so impressed with Alicia they asked her to return as a visiting student for spring and summer 2014. After returning to SDSU, Alicia was accepted into the prestigious SDSU Stem Cell Internship Program where she joined the lab of Dr. Jing Zhao at Sanford-Burnham Medical Research Institute. Throughout these research experiences, Alicia has had over ten research presentations, one submitted publication, and one in preparation.

Over her years at SDSU, Alicia has been an outstanding research scholar and excellent honor student. Alicia applied to 13 competitive Ph.D. programs in biology and biomedical science including MIT, Harvard, Stanford, UC Berkeley, etc. She was invited to 12 interviews and accepted to 10 programs. Alicia is excited to be attending MIT this fall in the Ph.D. program in Biology.

Pingdewinde Sam (Sam) is an exceptional young scientist and humanitarian. Sam’s originally from Burkina Faso, a small developing nation in West Africa, which Sam says, is “a country with a future.” Through a green card lottery, Sam came to the United States in 2008 without his family. Because people in Burkina Faso face a 9.1% infant mortality rate and a life expectancy of 56 years, Sam made the decision to help improve conditions in his home country. In 2011, Sam founded a non-profit organization, Teêbo, to fight poverty in Burkina Faso and improve and maintain the health of the Burkinabés through education and humanitarian work (http://www.teebo.org). Sam knew research was going to be required to address these problems so he sought research opportunities and secured a position in the laboratory of Dr. Linda Noble at UC, San Francisco. In the Noble lab, Sam used various instruments to assess motor performance and evaluate behaviors in mice to investigate the behavioral consequences of traumatic brain injury at adolescence. Their group demonstrated that age at time of injury should be considered when developing therapies for brain-injured children. The results of his work were published in PLoS ONE (Semple BD, Noble-Haeusslein LJ, Jun Kwon Y, Sam PN, Gibson AM, et al. (2014) Sociosexual and Communication Deficits after Traumatic Injury to the Developing Murine Brain). Sam received his B.S. in Physiology from SFSU in spring 2015 and began graduate work at Johns Hopkins University in Fall 2015 while continuing his work with Teêbo.
IMPACT OF LSAMP

Over 250 STEM majors at SJSU are part of LSAMP. These students and many other SJSU students benefit from LSAMP-funded activities which include Academic Excellence Workshops (AEW), Summer/Winter Preparation Courses, Research and the Graduate School Preparation Seminar (GSP). SJSU’s LSAMP works in close collaboration with NIH MARC, NIH RISE, and NSF S-STEM programs making our program very research oriented. The AEW and Preparation Courses, which are open to all students, serve two purposes: they provide much needed support for gateway courses and the facilitators often develop a strong interest in academic careers, expressing a desire to continue to Ph.D. degrees. The GSP Seminar has helped many students at SJSU learn about advanced degrees in STEM, funding and research opportunities on and off campus. Over 50 SJSU URM and non-URM students who participated in this activity are currently in STEM PhD programs, 23 of these are former AEW facilitators. Since 2009 our GSP and LSAMP students have obtained thirteen NSF Graduate Research Fellowships, one DOE Graduate Fellowship and one Gilman Fellowship. In addition we have six students who have been funded through LSAMP Bridges to Doctorate Programs.

OUTSTANDING ALUMNUS

CHRISTIAN ESPINOZA

MATERIALS ENGINEERING

Dr. Christian Espinoza received his B.S. degree in Materials Engineering from San Jose State University in May of 2009. He received his Ph.D. in Materials Science and Engineering from the University of Illinois at Urbana-Champaign in May of 2014. His thesis is titled “Design and Fabrication of Ceramic Beads and Laminated Composites for the Study of Stress Wave Mitigation.” His research was funded by the Department of Defense (DoD) under the Multidisciplinary University Research Initiative (MURI) and the Graduate Research Fellowship Program of the National Science Foundation (GRF-NSF). Dr. Espinoza’s professional experiences include working with Engineers without Borders. He spent several weeks in Guatemala working to improve water quality for local villagers (“Guatemala Biosand Water Filter Project”). Results included designing and conducting an instructional program to teach Guatemala villagers about the benefits of using the biosand water filter. He then participated in developing and installing three prototypes to repair biosand water filters. Dr. Espinoza also has held several internships throughout his education including: testing carbon nanotube composites at NASA Ames Research Center; developing new synthesis processes for ablators at Boeing Materials and Process Technology; and analyzing the microstructure of complex ceramics for Fiberlite Technologies, Inc.

He is currently employed as an advanced Engineer/Scientist at Owens Corning in Ohio working on hybrid composites for the automobile industry. In his free time, Dr. Espinoza serves as a mentor for students in the educational pipeline through the Society of Hispanic Professional Engineers (SHPE).

OUTSTANDING ALUMNA

NICOLE PERETTI • BIOMEDICAL ENGINEERING

Nicole has earned recognition as Cal Poly, San Luis Obispo’s Outstanding Alumna because of her tremendous academic success and her ongoing dedication to the CSU-LSAMP program. Nicole recently graduated with a 4.0 in the Biomedical Engineering Master’s program at Cal Poly. She participated in a CSU-LSAMP Global Awareness Experience at the Innsbruck Medical University Genetics Lab in Austria in 2012, and identifies this as the first stepping-stone to her success today. Not only did she meet a life-long friend through this experience, but the research she did in Austria opened doors to future presentations and networking. For example, Nicole presented her Austrian research on protein expression in liver function at both ABRCMS and ERN, and was invited as a guest speaker at an ERN International STEM Research Collaboration Session in 2012. As a result of the connections she made at these ERN presentations, Nicole was offered an off-campus summer research opportunity at Duke University in the Laboratory for Psychiatric Neuroengineering in 2012. This research experience was supported by a Sally Cassanova Pre-Doctoral Scholarship. During her summer research experiences at Duke University, Nicole received an invitation to participate in a one-year research internship at the Alberto Santos Dumont Association for Research Development Clinical Neuroscience Lab in Brazil. When she returned to Cal Poly to finish her graduate studies in 2014-15, Nicole reconnected with the LSAMP program to share her success story in a panel discussion where she motivated other students to participate in undergraduate research and international experiences.
OUTSTANDING ALUMNUS
THEO CROUCH II • COMPUTER SCIENCE

Theo Crouch II is an African-American veteran completing his second year as a doctoral student in Quantitative and Systems Biology at the University of California, Merced. Theo is performing research with Dr. Fabian Filipp in the Systems Biology and Cancer Metabolism Group at UC Merced on the differential mapping of transcriptional coactivation in prostate cancer.

Theo transferred from Palomar College to California State University, San Marcos, at which time he became a CSU-LSAMP Scholar. He graduated with a Bachelor of Science degree in Computer Science from CSU San Marcos in 2013. While an undergraduate at CSU San Marcos, Theo conducted research in the genetics research laboratory of Dr. Denise Garcia. His research focused on computationally analyzing biological data sets using Serial Analysis of Gene Expression (SAGE) to facilitate scientists’ discovery of differentially expressed immune response genes. In Dr. Garcia’s laboratory he incorporated his computer science expertise to study Litopenaeus stylirostris, western blue shrimp, as a model specimen for the innate immune system. In addition to his research, Theo was the founding student president of the local chapter of the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) and was an active member in Phi Theta Kappa, an International Honors Society.

Theo is a recipient of the 2015 National Science Foundation fellowship in Life Sciences- Bioinformatics and Computational Biology in recognition of his excellence in research.

OUTSTANDING RESEARCH
KIMBERLY TREVINO • CHEMISTRY

Kimberly Trevino is originally from Fresno, CA. She began her undergraduate education as a kinesiology major with an intention to become a physical therapist but switched to chemistry after she became interested in exploring chemical methods for medicinal purposes. She joined Dr. Carmen Works’ research team in the summer of 2012, working on the biological effects of chromium. In the summer of 2014, she began researching the quantification of a photo carbon monoxide releasing molecule using a binuclear rhodium(II) compound. Kim also participated in the CSU-LSAMP Global Awareness Program in Thailand where she researched computational methods studying HIV integrase enzyme. She has enjoyed being a supplemental instructor as well as a chemistry tutor. Kim graduated in the spring of 2015 and accepted an offer to the UC Davis Ph.D. program in chemistry with a Bradford Borge Fellowship. She is especially grateful for the support from CSU-LSAMP, the McNair Scholars Program, and the SSU chemistry department.

IMPACT OF LSAMP

CSU-LSAMP has had a positive impact on Sonoma State University. It has helped increase the diversity of the student body by providing financial and academic support to underrepresented students, thereby helping to improve the retention and graduation rates of such students. LSAMP provides research stipends averaging $1800 to promising students, allowing them to gain experience in independent research and helping to prepare them for graduate study. Four Sonoma State LSAMP participants have participated in International research experiences in Thailand and Costa Rica, and all four participants reported that the experiences were life-changing, providing exposure to foreign cultures and providing opportunities for future international research collaborations. Additionally, the Academic Excellence Workshops that began with LSAMP funding are now fully institutionalized and provide all Sonoma State students with valuable supplemental training.
OUTSTANDING ALUMNUS

EDGAR CAMPBELL • BIOLOGY

Edgar Campbell is from the Central Valley of California and stuck close to home for his undergraduate education by attending CSU, Stanislaus. He became a Biology major during his sophomore year. Edgar’s hard work in his biology courses led him to Washington University in St. Louis where he was selected to participate in The Genome Institute’s Opportunities in Genomic Research 2011 summer research program. Edgar worked in the Siteman Cancer Center in the lab of Dr. Matthew Walter where he investigated the U2AF1 mutation’s role in blood cancers. He learned a lot from his first lab experience and returned the next summer to continue the project, working in the lab of Dr. Timothy Graubert developing an assay to detect and measure a drug’s efficacy in modulating the effect of the U2AF1 mutation in hematopoietic cell. His results earned the 1st place award in the undergraduate poster competition at the 2013 Emerging Researchers National Conference in STEM.

In 2013, Edgar graduated from CSU, Stanislaus and almost immediately boarded a plane to France. He participated in a two-month NSF international REU in the city of Grenoble. Edgar worked at the European Molecular Biology Laboratory (EMBL) in the lab of Dr. Ramesh Pillai. When the REU was finished, Edgar was invited to remain at EMBL. He ultimately remained in France for 18 months. His work resulted in a co-first author publication in RNA. Edgar will pursue his Ph.D. in Chemical and Systems Biology at Stanford University School of Medicine.

IMPACT OF LSAMP

CSU-LSAMP has been part of the CSU-LSAMP alliance since 1995. Our participants come from all six STEM disciplines in the College of Science (Biology, Chemistry, Computer Science, Geology, Mathematics and Physics). The current focus of the program is professional development and preparation for graduate school. Our monthly meetings and regular communications introduce students to graduate school, types of programs, the application process, and the opportunities they can pursue on and off campus in order to develop competitive applications. We encourage and facilitate student participation in faculty mentored research activities including research internships on our campus, REUs around the country and internationally. Over the past three years, on average 43% of our students have presented research at conferences, 26% have been CSU-LSAMP student research interns, and 10% have done summer REUs (2-3 of these students per year in international programs). During this time 38% of our graduates have gone on to pursue graduate degrees in STEM, 20% have gone on to graduate school in the teaching or health professions, and 17% have entered the STEM workforce.

ACKNOWLEDGMENTS

THE CSU-LSAMP COMMUNITY: PAST AND PRESENT

Producing a report of this type would not be possible without drawing upon the work of the entire CSU-LSAMP community, past and present, whose efforts have contributed to the substance of the report in myriad ways, including program development and implementation, data production and project evaluation, project administration, fiscal management, and (of course) funding and advocacy. In the listings of the state-wide leadership and Campus Coordinators provided on pp 32-34 and in the pull-outs below, CSU-LSAMP acknowledges the contributions of many of the individuals and groups that are currently associated with CSU-LSAMP. It is equally important to acknowledge those whose shoulders the current project stands upon. Since the number of individuals who have served CSU-LSAMP is too extensive to name them all here, we can only say that we recognize and greatly appreciate their contributions. This being said, we would be remiss if we did not expressly acknowledge the members of the team who envisioned and wrote the initial “AMP” proposal for the CSU. That team included: the late Dr. Frank Collea, then Director of Research and Sponsored Programs at the Chancellor’s Office, who spearheaded the effort; Dr. Paul Fonteyn, then Dean of Graduate Studies and Interim Director of Development at San Francisco State University and currently President at Green Mountain College in Vermont; Dr. Ralph Mills, then Assistant Vice Chancellor for Research and Sponsored Projects at the Office of the Chancellor, and Dr. Philip Garcia, Director of Analytical Studies at the Office of the Chancellor, who has continued to serve CSU-LSAMP by providing system-wide data and reports and as a liaison with the Chancellor’s Office. We would like to acknowledge San Francisco State University, which served as the lead institution for the first two project periods and express our great appreciation for the leadership provided by Dr. Alfonso (Rick) Ratcliffe, Dean Emeritus of Engineering at CSU Northridge, who served as Principal Investigator for Phases I and II. Finally, we would like to acknowledge Dr. Juanita Barrena, Co-PI and Lead Project Director for Phases III and IV of CSU-LSAMP, and lead author of the 2011 Impact Report. Under the guidance of Dr. Barrena, CSU-LSAMP grew to include all 23 campuses of the CSU and more than doubled the number of students served per year. Her guidance and leadership have been invaluable to the entire CSU-LSAMP community and in particular to those of us in the Statewide Office. Dr. Barrena’s passion for, and understanding of the mission of LSAMP is most clearly demonstrated by her leadership in the production of the national LSAMP videos (LSAMP: Aiming High and Making a Difference).

DATA SOURCES FOR THE CSU-LSAMP SYSTEM REPORT

This report draws heavily from data compiled and analyzed by the Institute for Social Research (ISR) at California State University, Sacramento, on the CSU-LSAMP project’s evaluation. Our monthly meetings and regular communications introduce students to graduate school, types of programs, the application process, and the opportunities they can pursue on and off campus in order to develop competitive applications. We encourage and facilitate student participation in faculty mentored research activities including research internships on our campus, REUs around the country and internationally. Over the past three years, on average 43% of our students have presented research at conferences, 26% have been CSU-LSAMP student research interns, and 10% have done summer REUs (2-3 of these students per year in international programs). During this time 38% of our graduates have gone on to pursue graduate degrees in STEM, 20% have gone on to graduate school in the teaching or health professions, and 17% have entered the STEM workforce.

GRANT AND CONTRACT ADMINISTRATION

University Enterprises, Inc. (UEI), an auxiliary of California State University, Sacramento, under the direction of Mr. Jim Reinhardt (Executive Director) and Ms. Monica Kauppinen (Director of Contract and Research Administration) is the grantee for the CSU-LSAMP NSF award. In light of the size and complexity of the CSU-LSAMP project, which involves disbursements to and monitoring of expenditures at 23 campuses, CSU-LSAMP is especially grateful to the grant management and as a liaison with the Chancellor’s Office. We would like to acknowledge San Francisco State University, which served as the lead institution for the first two project periods and express our great appreciation for the leadership provided by Dr. Alfonso (Rick) Ratcliffe, Dean Emeritus of Engineering at CSU Northridge, who served as Principal Investigator for Phases I and II. Finally, we would like to acknowledge Dr. Juanita Barrena, Co-PI and Lead Project Director for Phases III and IV of CSU-LSAMP, and lead author of the 2011 Impact Report. Under the guidance of Dr. Barrena, CSU-LSAMP grew to include all 23 campuses of the CSU and more than doubled the number of students served per year. Her guidance and leadership have been invaluable to the entire CSU-LSAMP community and in particular to those of us in the Statewide Office. Dr. Barrena’s passion for, and understanding of the mission of LSAMP is most clearly demonstrated by her leadership in the production of the national LSAMP videos (LSAMP: Aiming High and Making a Difference).