Math 29
PAL Worksheet 4

1. If the point $(-3,7)$ is on the graph of an equation, what other point(s) must be on the graph if the graph is symmetric about . . .
a. the x-axis.
b. the y-axis.
c. the origin.
d. both the x - and y-axis.
2. The graph of a function f contains the point $(2,-5)$.
a. The graph of a function g is obtained by shifting the graph of $f 3$ units to the right, then 2 units upward, then reflecting in the y-axis. Find a point on the graph of g.
b. The graph of a function h is obtained by shifting the graph of $f 4$ units to the left, then 6 units downward, then reflecting in the x-axis. Find a point on the graph of h.
3. Find the function g that is finally graphed after the following three transformations are applied to the graph of $f(x)=|x|$.

- Shift left 3 units.
- Shift up 5 units.
- Reflect about the y-axis.

4. Consider the graph of $f(x)=x^{2}$. Explain why compressing the graph of f horizontally toward the y-axis by a factor of 3 gives the same result as stretching the graph vertically away from the x-axis by a factor of 9 .
5. Let $f(x)=3 x^{2}+4 x$. In each case, a function g is given whose graph can be obtained from the graph of f by performing a single transformation (that is, a shift left, right, up or down, a reflection in either the x-axis or y-axis, a stretch or compression by some factor away from or toward either the x-axis or y-axis). Describe the transformation that will transform the graph of f into the graph of g.
a. $g(x)=3 x^{2}-4 x$
b. $g(x)=3 x^{2}+4 x-2$
c. $g(x)=6 x^{2}+8 x$
d. $g(x)=27 x^{2}+12 x$
e. $g(x)=\frac{3}{4} x^{2}+2 x$
f. $g(x)=-3 x^{2}-4 x$
g. $g(x)=3(x-1)^{2}+4(x-1)$
