Math 29 PAL Worksheet 6

1. Let $f(x) = x^2 + 2x - 3$, $g(x) = 3\sqrt{x}$, $h(x) = \sqrt{x^2 + 4}$, $j(x) = \frac{x - 1}{x + 1}$ and $k(x) = (x + \sqrt[3]{x})^2$. Identify each of the following functions as a composition of some of these functions.

a.
$$l(x) = 3\sqrt{x^2 + 2x - 3}$$

b.
$$m(x) = (3\sqrt{x})^2 + 2(3\sqrt{x}) - 3$$

c.
$$n(x) = \frac{\sqrt{x^2 + 4} - 1}{\sqrt{x^2 + 4} + 1}$$

d.
$$p(x) = (x^2 + 2x - 3 + \sqrt[3]{x^2 + 2x - 3})^2$$

e.
$$q(x) = 3\sqrt[4]{x^2 + 4}$$

f.
$$r(x) = \sqrt{(x^2 + 2x - 3)^2 + 4}$$

g.
$$s(x) = 3\sqrt{\frac{x-1}{x+1}}$$

h.
$$t(x) = \frac{x^2 + 2x - 4}{x^2 + 2x - 2}$$

2. The graph of an invertible function f is shown. Sketch the graph of the inverse function f^{-1} .

f

3. Verify that f and g are inverses by using composition. That is, show that $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$.

a.
$$f(x) = 6x + 3$$
 and $g(x) = \frac{x-3}{6}$.

b.
$$f = x^5 + 3$$
 and $g(x) = \sqrt[5]{x - 3}$.

c.
$$f(x) = \sqrt[3]{x} + 2$$
 and $g(x) = (x - 2)^3$.

d.
$$f(x) = \frac{2x+1}{x-1}, x \neq 1$$
 and $g(x) = \frac{x+1}{x-2}, x \neq 2$.

4. Each of the following functions has an inverse. Algebraically determine the rule for the inverse function. Express your answer using the proper notation for the inverse function.

a.
$$f(x) = 7x^3 + 4$$

b.
$$g(x) = \sqrt[5]{4x - 3}$$

c.
$$h(x) = 4 + \sqrt[3]{5x - 3}$$

d.
$$u(x) = \frac{1}{2x - 9}$$

e.
$$v(x) = \frac{5x+1}{3-2x}$$

f.
$$k(x) = 6 + \frac{x}{3x - 2}$$