## Math 29 PAL Worksheet 7

- 1. Let  $g(x) = 2(x+1)^2 3$ .
  - a. Graph y = g(x). Explain why g is not invertible.
  - b. Let  $f(x) = 2(x+1)^2 3$ ,  $x \leq -1$ . (The function f is just the function g with a restricted domain.) Explain why f is invertible.
  - c. What are the domain and range of f? What are the domain and range of  $f^{-1}$ . Graph the function f and, using the reflection about the line y = x, also graph  $f^{-1}$  on the same axes.
  - d. Using algebra, determine the rule for  $f^{-1}(x)$ . (Your final answer should include any restrictions on the domain of  $f^{-1}$ .)

2. A farmer has 1500 feet of fencing and wants to fence off a rectangular field, where one side of the field will be along a straight river which will not require any fencing. If x represents the width of the field, write a function that gives the area A of the field as a function of x.



3. For each quadratic function, first complete the square and locate the vertex of the graph. Then sketch the graph, labeling the exact value of the y-intercept and the x-intercept(s), if any.

a.  $f(x) = x^2 - x - 12$ b.  $f(x) = 3x^2 - 6x + 8$ c.  $f(x) = -3x^2 + 4x + 1$ d.  $f(x) = \frac{3}{5}x^2 - 6x$ e.  $f(x) = \frac{1}{2}x^2 + x - 5$ f.  $f(x) = 3x^2 - \frac{1}{2}x + 1$