Math 29
PAL Worksheet 7

1. Let $g(x)=2(x+1)^{2}-3$.
a. Graph $y=g(x)$. Explain why g is not invertible.
b. Let $f(x)=2(x+1)^{2}-3, x \leq-1$. (The function f is just the function g with a restricted domain.) Explain why f is invertible.
c. What are the domain and range of f ? What are the domain and range of f^{-1}. Graph the function f and, using the reflection about the line $y=x$, also graph f^{-1} on the same axes.
d. Using algebra, determine the rule for $f^{-1}(x)$. (Your final answer should include any restrictions on the domain of f^{-1}.)
2. A farmer has 1500 feet of fencing and wants to fence off a rectangular field, where one side of the field will be along a straight river which will not require any fencing. If x represents the width of the field, write a function that gives the area A of the field as a function of x.

3. For each quadratic function, first complete the square and locate the vertex of the graph. Then sketch the graph, labeling the exact value of the y-intercept and the x-intercept(s), if any.
a. $f(x)=x^{2}-x-12$
b. $f(x)=3 x^{2}-6 x+8$
c. $f(x)=-3 x^{2}+4 x+1$
d. $f(x)=\frac{3}{5} x^{2}-6 x$
e. $f(x)=\frac{1}{2} x^{2}+x-5$
f. $f(x)=3 x^{2}-\frac{1}{2} x+1$
