Math 12 - Workshop \#5

1. Which quadrant are the following points located in?
(a) $(1,2)$
(c) $(-1, \pi)$
(b) $(e,-3)$
(d) $\left(-\frac{2}{3},-\frac{1}{2}\right)$
2. Suppose a is a real number, were could you find the point $(-1, a)$?
3. Consider the line segment

(a) Find the midpoint of the line segment
(b) Find the slope of the line segment
(c) Find a
4. Find the slopes and y intercepts of the following lines
(a) $y=\frac{2}{7} x-6$
(b) $y=1-2 x$
(c) $2 x+3 y=1$

Determine the slope of a line perpendicular to each of the three lines above.
5. Give the equation of a line with slope -4 which passes through the point $(1,7)$. What is the y intercept of this line?
6. (a) Find the equation for the line passing through the points $(1,2)$ and $(13,7)$.
(b) Is the point $(25,12)$ above, below or on the line?
(c) Is the point $(-20,-7)$ above, below or on the line?
7. Consider the line passing through the points $(3,5)$ and $(-1,9)$. We will call this line L
(a) Find a parallel line to L which passes through the point $(7,10)$.
(b) Find a perpendicular line to L which passes through the midpoint of $(3,5)$ and $(-1,9)$.
8. The following line is given by the equation $y=2 x+1$. Consider a point (x, y) on the line.

Consider a point (x, y) on the line.
(a) For which x value is $y=0$?
(b) For which x values is y positive?
(c) For which y values is x negative?
9. Surprisingly, the world population between 1961 and 2010 can be modeled by the equation

$$
y=0.0809534 x+2.96565
$$

where x is years after 1961 and y is in billions of people.
(a) What is the y intercept of this line? In a complete sentence explain the significance of the y intercept.
(b) What does this model say the world population was in 1980 ?
(c) What does this model predict the world population will be in 2020 ?
(d) In which year does this model predict the worlds population will reach 8.6 billion?

