Math 12 - Workshop \#7

1. (a) Give the equation for a line which passes through the origin and the point $(2,7)$.
(b) Give the equation for a line which passes through the point $(-1,4)$ and $(0,6)$.
(c) At which point (if at all) do these lines intersect?
2. If possible, solve the systems by elimination
(a) $\left\{\begin{array}{l}2 x+3 y=1 \\ x+3 y=2\end{array}\right.$
(c) $\left\{\begin{array}{l}4 x+y=6 \\ \frac{2}{3} x+\frac{1}{6} y=1\end{array}\right.$
(b) $\left\{\begin{array}{l}\frac{2}{3} x+\frac{1}{2} y=\frac{1}{2} \\ 2 x-y=1\end{array}\right.$
(d) $\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=\frac{5}{9} \\ \frac{1}{x}-\frac{1}{y}=\frac{1}{9}\end{array}\right.$
3. If possible, solve the following systems using substitution
(a) $\left\{\begin{array}{l}2 y-4=3 x \\ 6 x-4 y=-4\end{array}\right.$
(c) $\left\{\begin{array}{l}y=\frac{3}{2} x \\ 2 x+3 y=5\end{array}\right.$
(b) $\left\{\begin{aligned} \frac{3}{4} x+\frac{2}{3} y & =7 \\ \frac{3}{5} x-\frac{1}{2} y & =18\end{aligned}\right.$
(d) $\left\{\begin{array}{l}2 x+3 y=8 \\ 4 x+6 y=16\end{array}\right.$
4. let x be the number of units in thousands. Suppose $C(x)$ is a linear function whose output is the cost of making x units in thousands of dollars and $R(x)$ is a linear function that gives the revenue if x units are sold in thousands of dollars?

(a) What is the significance of the point shown?
(b) Will the production of these items ever turn a profit? Why or why not?
5. A system of two linear equations is formed by the two lines L_{1} and L_{2}.
(a) Suppose the system is only solved by the point $(3,7)$. What does this tell us about L_{1} and L_{2} ?
(b) Suppose the system isn't solved by any points. What does this tell us about L_{1} and L_{2} ?
(c) Suppose the system is solved by the points $(1,2)$ and $(4,9)$. What does this tell us about L_{1} and L_{2} ?
6. Solve the inequalities graphically
(a) $y<2 x$
(b) $y \geq 3$
(c) $x-2 y<1$
7. Which of the following points satisfy the given system of inequalities $\left\{\begin{array}{l}3 x+2 y>6 \\ x+3 y \leq 2\end{array}\right.$
(a) $(3,0)$
(c) $(4,-3)$
(b) $(3,-1)$
(d) $(5,-1)$
8. Find the solution set of the system of linear inequalities graphically
(a) $\left\{\begin{array}{l}x+y>1 \\ x+y \leq 2\end{array}\right.$
(c) $\left\{\begin{array}{l}3 x+y \leq 1 \\ -x+2 y>6\end{array}\right.$
(b) $\left\{\begin{array}{l}2 x-6 y \leq 12 \\ x-3 y<6\end{array}\right.$
(d) $\left\{\begin{array}{l}x^{2}-y<0 \\ y+x^{2}<2\end{array}\right.$
9. Create a system of linear inequalities whose solution set is the given region.

