Math 12 - Workshop \#9

1. Consider the polynomial

$$
p(x)=4 x^{4}-2 x^{5}+3 x+6
$$

(a) What is the degree of this polynomial?
(b) Write the polynomial in descending powers of x.
(c) Identify the leading coefficient and the constant coefficient of $p(x)$.
(d) Without a calculator find $p(0), p(1), p(-1), p(2)$ and $p(-2)$.
2. Let $f(x)=x+2$ and $g(x)=2 x+3$
(a) Find $f(x)-g(x)$
(b) What is $f(3)-g(3)$?
(c) Check your answer by computing $f(3)$ and $g(3)$ and then subtracting.
3. Create a polynomial with variable r which describes the area of the shaded region

Simplify as much as possible.
4. Suppose the directions on a problem were to simplify the left hand side of the following equation. The right hand side represents the first step in an attempted solution. Identify the error(s) in the work.

$$
(3 x+2)^{2}-(2 x+1)=9 x^{2}+4-2 x+1
$$

5. Perform the operation and simplify completely
(a) $3 t+7-2 t+4$
(d) $(3 a+2 b)(2-a)$
(b) $4 x(3 y+z)$
(e) $-3(t-8)^{2}-12(t-4)^{2}$
(c) $2 x^{2}+3-x(3 x+1)$
(f) $3 x y^{2} z\left(x^{2}-2 y+z^{3}\right)$
6. The cost of producing x units of an item is given by the function $C(x)=2 x+200$ in dollars, where the revenue for selling x units is given by $R(x)=10 x+300$ in dollars.
(a) What is $C(7)$? Explain your result in context.
(b) What is $R(15)$? Explain your result in context.
(c) Create a simplified polynomial $P(x)$ which gives profit in dollars. What is the profit if we produce and sell exactly 44 units?
7. Suppose you have a two squares. The larger square has sides 2 units longer than the sides of the smaller square.

(a) Give a polynomial which gives the cumulative perimeter of both squares where the variable is the length of a side of the smaller square. Simplify as much as possible.
(b) Suppose the squares from the previous problem are connected like so:

Give a polynomial which gives the perimeter of the above figure where the variable is the length of a side of the smaller square. Simplify as much as possible.

