1. (a) Divide the following

i. 23)2789 ii.
$$2x+3$$
) $2x^3+7x^2+8x+9$

- (b) What are the similarities and differences between part i and ii?
- (c) Based on your answers to part (a) try and guess the result of the polynomial long division by using the standard division in part i below.

i. 23)4479 ii. 2x + 3) $4x^3 + 4x^2 + 7x + 9$

- (d) Compute the polynomial long division in ii. Does it match your guess?
- 2. Divide the following, check your answers

(a)
$$\frac{6x^2 - x - 7}{x + 1}$$
 (b) $\frac{3x^4 + 2x^3 + x^2 + 2x + 9}{x + 3}$ (c) $\frac{4x^3 - 12x^2 + 17x + 12}{2x - 3}$

- 3. Let f(x) = x 2 and $g(x) = 2x^2 1$. Multiply out, simplify and write each polynomial with the powers of x in descending order
 - (a) g(x) + f(x)(b) $g(x) \cdot f(x)$ (c) $(f(x))^2 \cdot 3 - 2 \cdot g(x)$
- 4. Multiply out the following products and simplify as much as possible
 - (a) (x-2)(x+12)(b) (x+7)(x-7)(c) (2x+4)(4-2x)(d) (x+a)(x+b)
- 5. A student wants to find two integers which multiply together to be 36 but add together to be as big as possible. Which integers should they choose?
- 6. The number 12 can be factored into the product of two integers in the following 6 ways
 - 1, 12
 2, 6
 -1, -12
 -2, -6
 - 3, 4
 - (a) Which of the above pairs makes the following expression true

$$(x + __)(x + __) = x^2 - 8x + 12$$

(b) Find all the pairs of integers whose product is 45, using these pairs fill in the blanks with integers which make the following equation true

 $(x + __)(x + __) = x^2 + 14x + 45$

- (c) Do the same for -32 and the equation $(x + ___)(x + __] = x^2 14x 32$
- (d) Do the same for -20 and the equation $(2x + __)(x + __) = 2x^2 + 6x 20$
- (e) Do the same for $3^2 \cdot b^2$ and the equation $(x + \underline{})(x + \underline{}) = x^2 + 6bx + 3^2b^2$

- 7. Multiply out the following products and simplify as much as possible
 - (a) $(x^2 2x + 1)(x + 1)$ (b) $(x - 1)(x^2 + x + 1)$ (c) $(a + b)^2 + (a - b)^2$