1. Use the definition to simplify each radical, use the fact that for any real number y we have $\sqrt{y^2} = |y|$

(a)
$$\sqrt{4}$$

(b) $\sqrt{x^2}$
(c) $\sqrt{81x^2}$
(d) $\sqrt{\frac{x^2}{4}}$
(e) $\sqrt{\left(\frac{2^4}{x^2}\right)^{-1}}$
(f) $\sqrt[3]{-27}$

2. Use the definition of the radical to simplify

$$\sqrt{x^2 - 10x + 25}$$

3. Use the definition to simplify each radical

(a)
$$\sqrt[3]{8x^9y^{-3}}$$
 (b) $\sqrt[5]{x^5y^{10}z^{-15}}$

4. Use the fact that $\sqrt{y^2} = |y|$ to solve the following, when applicable, graph your solutions on a number line

(a) $\sqrt{x^2} = 7$ (b) $\sqrt{(2x+1)^2} = 10$ (c) $\sqrt{(3x-4)^2} = 1$ (d) $\sqrt{\left(\frac{1}{2}x-4\right)^2} > 11$ (e) $\sqrt{x^2-14x+49} < 8$

5. Use a T-table to graph the following and find the domain of each in interval notation.

- (a) $\sqrt{x} + 2$ (b) $\sqrt{x+2}$ (c) $\sqrt{x^2}$
- 6. Use a T-table to graph the following and find the domain of each in interval notation.
 - (a) $\sqrt{x-2}$ (b) $\sqrt[4]{3x-3}$ (c) $\sqrt[4]{2x+3}$