Math 12 - Workshop \#16

1. (a) What is the definition of $\sqrt[3]{2}$?
(b) Suppose a is a real number, how do we define $\sqrt[3]{a}$?
(c) Use the rules of exponenets to show that it makes sense to write $x^{\frac{1}{3}}$ as $\sqrt[3]{x}$. Your explanation must be good enough to convince your facilitator.
2. Is $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$ always true? Choose numbers a and b to support your answer.
3. Write $x^{-\frac{1}{2}}$ in at least four different, but equivalent ways.
4. Compute $\left(4^{3}\right)^{\frac{1}{2}}$ and $\left(4^{\frac{1}{2}}\right)^{3}$ by hand. Which is easier?
5. Compute the following without a calculator. Use the Super Helpful Property to make your life easier.
(a) $16^{\frac{3}{2}}$
(d) $3^{\frac{1}{3}} \cdot 3^{\frac{2}{3}}$
(b) $8^{\frac{2}{3}}$
(e) $4^{\frac{1}{4}} \cdot 2^{\frac{6}{4}}$
(c) $\left(\frac{25}{4}\right)^{-\frac{3}{2}}$
6. Simplify the following
(a) $\left(125 z^{3}\right)^{2 / 3}$
(b) $\left[(x+1)^{2}\right]^{1 / 2}$
7. Simplify the following with only positive exponents. Assume all variables are positive
(a) $x^{4} \cdot x^{2}$
(c) $\left(a^{3}\right)^{2}$
(b) $x^{3 / 2} \cdot x^{5 / 7}$
(d) $\left(a^{2 / 3}\right)^{3 / 4}$
8. Simplify the following with only positive exponents. Assume all variables are positive
(a) $\frac{z^{4}}{z^{2}}$
(c) $\left(w^{3} y^{-3}\right)^{2}$
(b) $\frac{z^{3 / 2}}{z^{5 / 7}}$
(d) $\left(w^{3 / 5} y^{1 / 7}\right)^{3}$
9. Multiply the following and simplify the exponents
(a) $\left(x^{3}+3 x^{2}-1\right) \cdot x^{-1 / 2}$
(b) $y^{3 / 5} \cdot\left(y^{2 / 5}+y^{1 / 5}-y^{-3 / 5}\right)$
(c) $\left(x^{1 / 2}+y^{3 / 2}\right)^{2}$
10. Simplify the following
(a) $\sqrt{7} \sqrt{7}$
(c) $\sqrt[3]{3} \sqrt[3]{9}$
(b) $\sqrt[3]{13} \sqrt[3]{13} \sqrt[3]{13}$
(d) $\sqrt{2700}$
11. Simplify the following assume all variables are positive values
(a) $\frac{\sqrt{32 a^{5}}}{\sqrt{2 a}}$
(c) $\sqrt[3]{\frac{7 a^{3}}{64}}$
(b) $\sqrt{\frac{5 x}{16 z^{4}}}$
(d) $\sqrt[3]{\frac{26 b^{-3}}{y^{6}}}$
12. Suppose that $\sqrt{2 y^{7}}=1.1$. Without using a calculator, evaluate

$$
\sqrt{8 y^{7}}+\sqrt{32 y^{7}}-\sqrt{2 y^{7}}
$$

13. Simplify the following
(a) $\sqrt{288}-\sqrt{98}$
(b) $\sqrt[3]{x y^{4}}+\sqrt[3]{8 x y^{4}}-\sqrt[3]{27 x y^{4}}$
