- 1. (a) What is the definition of $\sqrt[3]{2}$?
 - (b) Suppose a is a real number, how do we define $\sqrt[3]{a}$?
 - (c) Use the rules of exponenets to show that it makes sense to write $x^{\frac{1}{3}}$ as $\sqrt[3]{x}$. Your explanation must be good enough to convince your facilitator.
- 2. Is $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$ always true? Choose numbers a and b to support your answer.
- 3. Write $x^{-\frac{1}{2}}$ in at least four different, but equivalent ways.
- 4. Compute $(4^3)^{\frac{1}{2}}$ and $(4^{\frac{1}{2}})^3$ by hand. Which is easier?
- 5. Compute the following without a calculator. Use the Super Helpful Property to make your life easier.
 - (a) $16^{\frac{3}{2}}$ (b) $8^{\frac{2}{3}}$ (c) $\left(\frac{25}{4}\right)^{-\frac{3}{2}}$ (d) $3^{\frac{1}{3}} \cdot 3^{\frac{2}{3}}$ (e) $4^{\frac{1}{4}} \cdot 2^{\frac{6}{4}}$
- 6. Simplify the following
 - (a) $(125z^3)^{2/3}$ (b) $[(x+1)^2]^{1/2}$
- 7. Simplify the following with only positive exponents. Assume all variables are positive
 - (a) $x^4 \cdot x^2$ (b) $x^{3/2} \cdot x^{5/7}$ (c) $(a^3)^2$ (c) $(a^{2/3})^{3/4}$
- 8. Simplify the following with only positive exponents. Assume all variables are positive
 - (a) $\frac{z^4}{z^2}$ (b) $\frac{z^{3/2}}{z^{5/7}}$ (c) $(w^3y^{-3})^2$ (c)
- 9. Multiply the following and simplify the exponents
 - (a) $(x^3 + 3x^2 1) \cdot x^{-1/2}$ (b) $y^{3/5} \cdot (y^{2/5} + y^{1/5} y^{-3/5})$ (c) $(x^{1/2} + y^{3/2})^2$
- 10. Simplify the following

(a)
$$\sqrt{7}\sqrt{7}$$
 (c) $\sqrt[3]{3}\sqrt[3]{9}$

(b) $\sqrt[3]{13}\sqrt[3]{13}\sqrt[3]{13}$ (d) $\sqrt{2700}$

11. Simplify the following assume all variables are positive values

(a)
$$\frac{\sqrt{32a^5}}{\sqrt{2a}}$$
 (c) $\sqrt[3]{\frac{7a^3}{64}}$
(b) $\sqrt{\frac{5x}{16z^4}}$ (d) $\sqrt[3]{\frac{26b^{-3}}{y^6}}$

12. Suppose that $\sqrt{2y^7} = 1.1$. Without using a calculator, evaluate

$$\sqrt{8y^7} + \sqrt{32y^7} - \sqrt{2y^7}$$

13. Simplify the following

(a)
$$\sqrt{288} - \sqrt{98}$$
 (b) $\sqrt[3]{xy^4} + \sqrt[3]{8xy^4} - \sqrt[3]{27xy^4}$