- 1. Let the letter *i* have the property that $i^2 = -1$.
 - (a) Compute the following

i	=	i	i^5	=	i^9	=	
i^2	=	-1	i^6	=	i^{10}	=	
i^3	=		i^7	=	i^{11}	=	
i^4	=		i^8	=	i^{12}	=	

- (b) What pattern do you notice?
- (c) Use this pattern to compute

•
$$i^{21}$$
 • i^{102} • i^{616} • i^{3273}

2. Add or subtract and combine like terms

(a)	(2+4x) + (1-3x)	(c)	(2+3x) - (1+3x)
(b)	(2+4i) + (1-3i)	(d)	(2+3i) - (1+3i)

3. Multiply out the following

(a)
$$\frac{1}{2}(2-4x)$$
 (c) $\frac{x}{2}(5-3x)$ (e) $(1+x)(2-3x)$
(b) $\frac{1}{2}(2-4i)$ (d) $\frac{i}{2}(5-3i)$ (f) $(1+i)(2-3i)$

4. Multiply the following

(a)
$$(2+3i)^2$$

(b) $(2+3i)(2-3i)$
(c) $(\sqrt{3}-i)(\sqrt{3}+i)$
(d) $(\sqrt{2}+\sqrt{3}i)(\sqrt{2}-\sqrt{3}i)$
(e) $(a+2i)(a-2i)$
(f) $(a+bi)(a-bi)$

5. Use your answer from part f of the previous problem to find real numbers a and b such that

$$(2+3i)(a+bi) = 13.$$

Adjust your previous answer to find real numbers c and d such that

$$(2+3i)(c+di) = 1.$$