1. Let the letter i have the property that $i^{2}=-1$.
(a) Compute the following

i	$=$	i^{5}	$=$	$i^{9}=$
$i^{2}=$	$=1$	$i^{6}=$	$i^{10}=$	
$i^{3}=$	$i^{7}=$	$i^{11}=$		
$i^{4}=$	$i^{8}=$	$i^{12}=$		

(b) What pattern do you notice?
(c) Use this pattern to compute

- i^{21}
- i^{102}
- i^{616}
- i^{3273}

2. Add or subtract and combine like terms
(a) $(2+4 x)+(1-3 x)$
(c) $(2+3 x)-(1+3 x)$
(b) $(2+4 i)+(1-3 i)$
(d) $(2+3 i)-(1+3 i)$
3. Multiply out the following
(a) $\frac{1}{2}(2-4 x)$
(c) $\frac{x}{2}(5-3 x)$
(e) $(1+x)(2-3 x)$
(b) $\frac{1}{2}(2-4 i)$
(d) $\frac{i}{2}(5-3 i)$
(f) $(1+i)(2-3 i)$
4. Multiply the following
(a) $(2+3 i)^{2}$
(c) $(\sqrt{3}-i)(\sqrt{3}+i)$
(e) $(a+2 i)(a-2 i)$
(b) $(2+3 i)(2-3 i)$
(d) $(\sqrt{2}+\sqrt{3} i)(\sqrt{2}-\sqrt{3} i)$
(f) $(a+b i)(a-b i)$
5. Use your answer from part f of the previous problem to find real numbers a and b such that

$$
(2+3 i)(a+b i)=13
$$

Adjust your previous answer to find real numbers c and d such that

$$
(2+3 i)(c+d i)=1
$$

