1. Write the imaginary number in simplified form
(a) $\sqrt{-16}$
(b) $\sqrt{-10}$
2. Divide and write the expression in standard form. Assume $a$ and $b$ are real numbers which are not both zero.
(a) $\frac{7}{2-i}$
(c) $\frac{2+9 i}{2-9 i}$
(b) $\frac{1}{3+4 i}$
(d) $\frac{1}{a+b i}$
3. Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Compute the following

$$
\begin{array}{|r|l|l|}
\hline \omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i & \omega^{4}= & \omega^{7}= \\
\omega^{2}= & \omega^{5}= & \omega^{8}= \\
\omega^{3}= & \omega^{6}= & \omega^{9}= \\
\hline
\end{array}
$$

Use the pattern to find $\omega^{33}, \omega^{97}$ and $\omega^{1246}$
4. Use the square root property to solve
(a) $x^{2}=9$
(c) $(x+3)^{2}=4$
(b) $(x-2)^{2}=9$
(d) $(x-1)^{2}-3=0$
5. Fill in the blank to make the following equations true
(a) $x^{2}+6 x+$ $\qquad$ $=(x+3)^{2}$
(b) $x^{2}+3 x+\_=\left(x+\frac{3}{2}\right)^{2}$
6. What number could you add to both sides of the following equations to make the left hand side a perfect square?
(a) $x^{2}+6 x=1$
(b) $x^{2}+3 x=2$
(c) $x^{2}+5 x=1$
7. Complete the square to solve.
(a) $x^{2}+2 x=4$
(c) $\frac{5 x-1}{-3}=x^{2}$
(b) $x^{2}+4 x=5$
(d) $x^{2}-14 x+50=0$
8. Suppose that $m$ is a real number. For each of the following solve for $x$ by completing the square
(a) $x^{2}+4 x+m=0$
(b) $x^{2}+m x+1=0$

