1. Write the imaginary number in simplified form

(a)
$$\sqrt{-16}$$
 (b) $\sqrt{-10}$

2. Divide and write the expression in standard form. Assume a and b are real numbers which are not both zero.

(a)
$$\frac{7}{2-i}$$
 (c) $\frac{2+9i}{2-9i}$

(b)
$$\frac{1}{3+4i}$$
 (d) $\frac{1}{a+bi}$

3. Let $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Compute the following

ω	=	$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$	ω^4	=	ω^7	=	
ω^2	=	2 2	ω^5	=	ω^8	=	
ω^3	=		ω^6	=	ω^9	=	

Use the pattern to find ω^{33} , ω^{97} and ω^{1246}

- 4. Use the square root property to solve
 - (c) $(x+3)^2 = 4$ (a) $x^2 = 9$ (b) $(x-2)^2 = 9$ (d) $(x-1)^2 - 3 = 0$
- 5. Fill in the blank to make the following equations true

(a)
$$x^2 + 6x + \underline{\qquad} = (x+3)^2$$

(b) $x^2 + 3x + \underline{\qquad} = \left(x + \frac{3}{2}\right)^2$

6. What number could you add to both sides of the following equations to make the left hand side a perfect square?

(a)
$$x^2 + 6x = 1$$
 (b) $x^2 + 3x = 2$ (c) $x^2 + 5x = 1$

7. Complete the square to solve.

(

(a)
$$x^2 + 2x = 4$$

(b) $x^2 + 4x = 5$
(c) $\frac{5x - 1}{-3} = x^2$
(d) $x^2 - 14x + 50 = 0$

8. Suppose that m is a real number. For each of the following solve for x by completing the square

(a)
$$x^2 + 4x + m = 0$$
 (b) $x^2 + mx + 1 = 0$