Math 12 - Workshop \#23

1. Graph the following and determine if the discriminant is positive, negative or zero.
(a) $f(x)=3-x^{2}$
(b) $g(x)=(x-2)^{2}$
(c) $h(x)=(x-2)^{2}+2$
2. A parabola written as $f(x)=a(x-h)^{2}+k$ is said to be in vertex form. Complete the square to write the following parabolas in vertex form.
(a) $f(x)=x^{2}+6 x-1$
(c) $h(x)=7 x-x^{2}+3$
(b) $g(x)=2 x^{2}+8 x$
(d) $k(x)=-3 x^{2}+6 x+3$
3. Find the vertex and axis of symmetry of each parabola from the previous problem.
4. Find the vertex of the parabola $y=-2(x+1)^{2}-7$. Is this vertex a maximum or minimum?
5. Let x be the side of a rectangle with a 70 inch perimeter.
(a) Construct an expression in terms of the variable x which gives the area of the rectangle.
(b) Graph the parabola you constructed in part (a).
(c) Looking at the graph, which x value would give the largest possible area for the rectangle?
(d) What dimensions would the rectangle have to be to achieve the maximum possible area.
6. The revenue for selling x action figures is given by

$$
R(x)=-\frac{x^{2}}{324}+3 x
$$

how many units need to be sold to maximize the revenue?
7. Graph the inequalities
(a) $y<x^{2}$
(b) $y \geq x^{2}+1$
(c) $y<4-x^{2}$

