1. (a) Let $g(x) = \log_2 x$. Complete the chart:

x	$\frac{1}{32}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	16	32
g(x)			-3				1				

- (b) Use the points you generate to graph $g(x) = \log_2 x$
- (c) On the same set of axis graph $f(x) = 2^x$, how are the two graphs similar?
- 2. Which of the following is $f(x) = \log(x)$, $g(x) = \log_3(x)$ and $h(x) = \log_5(x)$?

- 3. Without a calculator find these values exactly
 - (a) $\log(10)$

(d) $\log_{\sqrt{2}}(2)$

(g) $\log_{\pi}(\pi^3)$

(b) $\log(0.1)$

(e) $\log_3(3\sqrt{3})$

(c) $\log_2(\sqrt{2})$

(f) $\log_8(2)$

- (h) $\log_{\frac{1}{\sqrt{2}}}(2)$
- 4. The "loudness" of a sound is measured in decibels (dB). The decibel level of a sound is given by the formula

$$10 \cdot \log \left(\frac{I}{I_0}\right)$$

where I is the intensity of the sound, and I_0 is the sound intensity at the threshold of hearing.

- (a) What is the decibel level of a sound if its intensity is the threshold of sound, that is when $I = I_0$?
- (b) The threshold of pain for a noise has intensity 10^{13} times the threshold of hearing, what is the decibel level is the threshold of pain?
- (c) Hobby cannons, like the one fired at Sacramento State football games, can have sound intensity that is $(10)^{21/2}$ times the threshold of hearing. What is the decibel level of these cannons?