Math 12 - Workshop \#27

1. Without a calculator find these values exactly
(a) $\log (0.001)$
(c) $\log _{100}(0.001)$
(f) $\log _{\sqrt{5}}(125)$
(b) $\ln \left(\frac{1}{\sqrt[3]{e}}\right)$
(d) $\log _{4}(8)$
(g) $\log _{2 \sqrt{2}}(4)$
(e) $\log _{100}(1000 \sqrt{10})$
(h) $\log _{\frac{1}{\sqrt{7}}}(49 \sqrt{7})$
2. Solve the following for x
(a) $2^{x^{2}+1}=4^{x}$
(b) $\log _{x}(16)=4$
3. Write the following as a single logarithm
(a) $\frac{1}{2} \log x-2 \log y$
(b) $1-\left[\log _{3}(x-1)+\log _{3}(x+1)\right]$
4. Suppose that $\log (a)=\frac{11}{10}, \log (b)=\frac{5}{2}$ and $\log (c)=\frac{4}{3}$, without using a calclator, compute the following
(a) $\log \left(\frac{a^{10} b^{2}}{c^{3}}\right)$
(b) $\log \left[\left(\frac{\sqrt{c} \cdot b}{a^{2}}\right)^{-1}\right]$
5. Solve the following for x
(a) $\left(3-\ln \left(\frac{x}{2}\right)\right)^{3}=8$
(b) $\log _{4}(x-2)-\log _{4}(3 x)=\log _{4}(4)$
(c) $\log _{11}(x)+\log _{11}(5 x+2)=\frac{1}{2} \log _{11}(9)$
