1. Find the equation of the line that goes through the point $(1,1)$ and is parallel to the line tangent to the graph of $y=\frac{3}{x}-x^{2}$ at $x=2$.
2. For the function $f(x)=\frac{e^{x}}{x^{2}}$, the derivative is $f^{\prime}(x)=\frac{x^{2} e^{x}-2 x e^{x}}{x^{4}}$. Find all points where the tangent line to the graph of $y=f(x)$ is horizontal.
3. There are two lines that go through the point $\left(\frac{1}{2},-2\right)$ and are tangent to the graph of $f(x)=x^{2}$. Find where each of those lines touch the graph.
4. Let l denote the tangent line to $y=x^{2}$ at the point $P=(3,9)$. Find the equation of the line through P which is perpendicular to l. (This line is called the normal line.)
5. Compute the following limits.
(a) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-4}{\sqrt{x+2}}$
(b) $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x^{2}-2 x-3}$
(c) $\lim _{x \rightarrow \infty} 2 \sqrt{x+1}-\sqrt{4 x-1}$
(d) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}+2 x+6}{2 x+6}$
