1. The graph of $y=f(x)$ is shown below.

(a) For what values of x is $f^{\prime}(x)=0$?
(b) For what values of x is $f^{\prime}(x)$ undefined?
(c) Find all intervals where $f^{\prime}(x)>0$.
(d) Find all intervals where $f^{\prime}(x)<0$.
2. Suppose $g(x)$ is some function and you know that $g^{\prime}(x)>0$ on $(-\infty, 3)$ and $g^{\prime}(x)<0$ on $(3, \infty)$. What must be true about $g^{\prime}(3)$?
3. Let $f(x)=\frac{x^{2}+4}{x}$.
(a) Determine the intervals on which f is increasing or decreasing.
(b) Use this information to locate any local maxima or minima for f.
4. Let $g(x)=\left(x^{2}-9\right)^{2}$.
(a) Determine the intervals on which g is increasing or decreasing.
(b) Use this information to locate any local maxima or minima for g.
5. Let $h(x)=x\left(x^{2}-9\right)$.
(a) Determine the intervals on which $h(x)>0$ and on which $h(x)<0$.
(b) Determine the intervals on which $h^{\prime}(x)>0$ and on which $h^{\prime}(x)<0$.
(c) Find all local maxima and minima for h.
(d) Use the results from above to sketch a graph of h.
6. Let $k(x)=\frac{x^{3}}{x^{2}-3}$.
(a) Determine the intervals on which k is increasing or decreasing.
(b) Use this information to locate any local maxima or minima for k.
