Math 30 - Workshop \#2

1. A ball is thrown down from the top of a building. The distance (in feet) it has traveled after t seconds is $f(t)=16 t^{2}+20 t$.
(a) Find the average velocity of the ball between $t=2$ and $t=5$.
(b) Find the average velocity of the ball between $t=2$ and $t=4$.
(c) Find the average velocity of the ball between $t=2$ and $t=3$.
(d) Find the average velocity of the ball between $t=2$ and $t=2.5$.
(e) Find the average velocity of the ball between $t=2$ and $t=2.1$.
(f) Find the average velocity of the ball between $t=2$ and $t=2.01$.
(g) From your answers to the above, what do you expect will be the instantaneous velocity of the ball at time $t=2$ seconds?
(h) Find an expression for the average velocity of the ball between $t=2$ and $t=2+h$.
(i) Simplify the expression you found in part 1h, and determine what happens to this simplified expression when h is very close to zero.
2. The graph of f is shown below.

(a) Find an expression for the slope of the line between $(0, f(0))$ and $(2, f(2))$.
(b) Find an expression for the slope of the line between $(a, f(a))$ and $(2, f(2))$.
(c) Find an expression for the slope of the line between $(2,4)$ and $(b, f(b))$, where b is an arbitrary number.
(d) Find an expression for the slope of the line between $(2,4)$ and $(2+h, f(2+h))$.
3. Consider the function $f(x)=3 x^{2}-2 x+1$.
(a) Find the slope of the line that passes through $(2,9)$ and $(2.5, f(2.5))$.
(b) Find the slope of the line that passes through $(2,9)$ and $(2.1, f(2.1))$.
(c) Find an expression for the slope of the line that passes through $(2,9)$ and $(2+h, f(2+h))$.
(d) Simplify the expression you found in part 3c, and determine what happens to this simplified expression when h is very close to zero.
(e) Looking at your answer to part 3d, what information do you now know about the line that is tangent to the graph of $y=f(x)$ at $x=2$?
(f) Find the equation of the line that is tangent to the graph of f at $(2,9)$.
