Math 30 - Workshop \#20

1. Sketch a graph that satisfies all of the following criteria.

- $f(x)$ is continuous
- $f(-4)=0$ and $f(x)$ does not equal zero anywhere else
- $f^{\prime}(x)>0$ on the intervals $(-\infty,-1)$ and $(2, \infty)$
- $f^{\prime}(x)<0$ on the interval $(-1,2)$
- $f^{\prime}(-1)$ is undefined and $f^{\prime}(2)$ is undefined

2. Sketch a graph that satisfies all of the following criteria.

- $f(x)$ is continuous
- $f(-2)=0, f(1)=0$ and $f(x)$ does not equal zero anywhere else
- $\lim _{x \rightarrow \infty} f(x)=3$
- $\lim _{x \rightarrow-\infty} f(x)=\infty$
- $f^{\prime}(x)<0$ on the intervals $(-\infty,-1)$ and $\left(0, \frac{1}{2}\right)$
- $f^{\prime}(x)>0$ on the intervals $(-1,0)$ and $\left(\frac{1}{2}, \infty\right)$

3. Find the absolute maximum and minimum of the following functions on the given interval.
(a) $f(x)=\sin x, 0 \leq x \leq \frac{\pi}{2}$
(b) $f(x)=2 x^{3}-3 x^{2}-12 x+1$, $[-2,3]$
(c) $f(x)=x-\ln x,\left[\frac{1}{2}, 2\right]$
4. Show that the function $f(x)=x^{101}+x^{51}+x+1$ has neither a local maximum or a local minimum.
5. For each of the problems below, sketch a graph of a function that is continuous on $[1,5]$ and has the given properties.
(a) Absolute minimum at 2, absolute maximum at 3, local minimum at 4
(b) No local maximum or minimum, but 2 and 4 are critical numbers
(c) Absolute maximum at 5, absolute minimum at 2, local maximum at 3, local minima at 2 and 4
