- 1. Sketch a graph that satisfies all of the following criteria.
 - f(x) is continuous
 - f(-4) = 0 and f(x) does not equal zero anywhere else
 - f'(x) > 0 on the intervals $(-\infty, -1)$ and $(2, \infty)$
 - f'(x) < 0 on the interval (-1, 2)
 - f'(-1) is undefined and f'(2) is undefined
- 2. Sketch a graph that satisfies all of the following criteria.
 - f(x) is continuous
 - f(-2) = 0, f(1) = 0 and f(x) does not equal zero anywhere else
 - $\lim_{x \to \infty} f(x) = 3$

•
$$\lim_{x \to -\infty} f(x) = \infty$$

- f'(x) < 0 on the intervals $(-\infty, -1)$ and $(0, \frac{1}{2})$
- f'(x) > 0 on the intervals (-1, 0) and $(\frac{1}{2}, \infty)$
- 3. Find the absolute maximum and minimum of the following functions on the given interval.
 - (a) $f(x) = \sin x, \ 0 \le x \le \frac{\pi}{2}$
 - (b) $f(x) = 2x^3 3x^2 12x + 1$, [-2,3]
 - (c) $f(x) = x \ln x$, $[\frac{1}{2}, 2]$
- 4. Show that the function $f(x) = x^{101} + x^{51} + x + 1$ has neither a local maximum or a local minimum.
- 5. For each of the problems below, sketch a graph of a function that is continuous on [1,5] and has the given properties.
 - (a) Absolute minimum at 2, absolute maximum at 3, local minimum at 4
 - (b) No local maximum or minimum, but 2 and 4 are critical numbers
 - (c) Absolute maximum at 5, absolute minimum at 2, local maximum at 3, local minima at 2 and 4