To do the first two exercises, you need to know the following:
$\int_{a}^{b} f(x) d x$ represents the area between the graph of $y=f(x)$ and the x-axis, between $x=a$ and $x=b$.
However, areas that are below the x-axis are counted as being negative.

1. Evaluate the following integrals by finding the corresponding areas.
(a) $\int_{0}^{3} 2 x d x$
(b) $\int_{1}^{3}(x+2) d x$
(c) $\int_{0}^{3}(x-1) d x$
(d) $\int_{0}^{4}(3-2 x) d x$
(e) $\int_{-1}^{1} \sqrt{1-x^{2}} d x$
2. (a) Compute $\int_{-a}^{a} x^{3} d x$
(b) Compute $\int_{-a}^{a} \sin (x) d x$
(c) Below is a partial sketch of the graph of $f(x)$. Complete the graph, so that $\int_{-a}^{a} f(x) d x=0$ for any value of a.

(d) Find conditions on a function $f(x)$ under which $\int_{-a}^{a} f(x) d x=0$ for all a.
(e) Compute $\int_{-a}^{a} x e^{x^{2}} d x$
(f) What property of a function $g(x)$ would ensure that $\int_{-t}^{t} g(x) d x=2 \int_{0}^{t} g(x) d x$ for every value of t ?
3. Let $f(x)=\frac{x+1}{x^{2}}$
(a) Find the intervals on which f is increasing.
(b) Identify any local maxima or minima.
(c) Find the regions in which the graph of f is concave downward.
(d) Find all inflection points for the graph of f.
