Math 30 - Workshop \#26

1. Compute the following limits:
(a) $\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}$
(b) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$
(c) $\lim _{x \rightarrow 0^{+}} x e^{\frac{1}{x}}$
(d) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{1-\cos x}\right)$
2. (a) Find a function $f(x)$ such that $f^{\prime}(x)=x^{2}-5$.
(b) Find a function $f(x)$ such that $f^{\prime}(x)=x^{2}-5$ and $f(3)=2$.
(c) How many functions are there such that $f^{\prime}(x)=x^{2}-5$?
3. If $f^{\prime \prime}(x)=\frac{1}{x^{2}}+4 x^{2}$ and $f^{\prime}(1)=1$ and $f(1)=5$, then find $f(x)$.
4. The girth of a shipping carton is the perimeter of an end. Shipping restrictions require that the sum of the girth and length not exceed 100 in . Find a rule that describes the volume of a package with a square end (the sum of whose girth and length equals 100 in) as a function of the width of an end. Then use calculus to find the maximum volume, and the dimensions that give that volume.
5. Differentiate the following.
(a) $f(x)=\frac{x^{2}+3}{\tan x}$
(b) $g(x)=\cos (\ln (\cos x))$
(c) $h(x)=e^{\left(x e^{2 x}\right)}$
