1. Integrate.
(a) $\int_{1}^{2}\left(\frac{2}{x}+\frac{x}{2}\right) d x$
(b) $\int_{1}^{2}\left(\frac{\pi^{2}}{x^{2}}-e^{x}\right)$
(c) $\int_{1}^{4} \frac{3 x-4}{\sqrt{x}} d x$
2. Find $\frac{d y}{d x}$ at $(1,1)$ for the curve $\frac{y}{x}+e^{x y}=e^{y}+x$.
3. At what point on the graph of $f(x)=\frac{9}{x}+6 \ln x$ is the tangent line parallel to the line $y=x-5$?
4. A boat is pulled toward a pier by means of a taut cable. If the boat is 20 ft . below the level of the pier and the cable is pulled in at the rate of $36 \mathrm{ft} / \mathrm{min}$, how fast is the boat moving when it is 48 feet from the base of the pier?
5. Use the graph of f, shown below, to find the following.

(a) $\lim _{x \rightarrow \infty} f(x)$
(b) $\lim _{x \rightarrow \infty} f^{\prime}(x)$
(c) $f^{\prime}(1)$
(d) Find a value of x for which $f^{\prime}(x)=\frac{1}{2}$.
(e) For what approximate values of x is the graph of f concave downward?
(f) Find a value of x for which $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$.
(g) Where are the inflection points on the graph?
