Math 30 - Workshop \#29

1. (a) Compute $\frac{d}{d x}\left(\frac{3}{2} e^{x^{2}}\right)$.
(b) Which of the following integrals are you able to compute, just by having computed the above derivative?

$$
\int \frac{3}{2} e^{x^{2}} d x \quad \int 3 x e^{x^{2}} d x \quad \int e^{x^{2}} d x
$$

2. Consider the integral $\int 3 x^{2} \sin \left(x^{3}\right) d x$.
(a) If we let $u=x^{3}$, then what must go in the blank below?

$$
\int 3 x^{2} \sin \left(x^{3}\right) d x=\int \ldots d u
$$

(b) Do you think the new "du" integral will be easier, harder, or about the same difficulty to compute as the original " $d x$ " integral?
3. Consider the integral $\int 5 x e^{4 x^{2}} d x$.
(a) If we let $u=x^{2}$, then what must go in the blank below?

$$
\int 5 x e^{4 x^{2}} d x=\int \longrightarrow d u
$$

(b) If we let $u=4 x^{2}$, then what must go in the blank below?

$$
\int 5 x e^{4 x^{2}} d x=\int \longrightarrow d u
$$

(c) If we let $u=2 x$, then what must go in the blank below?

$$
\int 5 x e^{4 x^{2}} d x=\int \longrightarrow d u
$$

(d) Do any of the new "du" integrals look like they will be easier to compute than the original " $d x$ " integral? If so, which one(s)?
4. (a) If $u=x^{2}$, then what must go in the blank below?

$$
\int \ldots \frac{\sin u}{u^{5}} d u
$$

(b) If $u=\tan x$, then what must go in the blank below?

$$
\int \ldots u^{2}+5 u d u
$$

5. Compute the following integrals.
(a) $\int x \sqrt{5 x^{2}+2} d x$
(b) $\int e^{x} \sqrt{2+e^{x}} d x$
(c) $\int \frac{(\ln x)^{5}}{x} d x$
(d) $\int \frac{e^{x}}{e^{x}+1} d x$
