- 1. (a) Compute $\frac{d}{dx} \left(\frac{3}{2} e^{x^2} \right)$.
 - (b) Which of the following integrals are you able to compute, just by having computed the above derivative?

$$\int \frac{3}{2}e^{x^2} dx \qquad \qquad \int 3xe^{x^2} dx \qquad \qquad \int e^{x^2} dx$$

- 2. Consider the integral $\int 3x^2 \sin(x^3) dx$.
 - (a) If we let $u = x^3$, then what must go in the blank below?

$$\int 3x^2 \sin(x^3) \ dx = \int \underline{\qquad} \ du$$

- (b) Do you think the new "du" integral will be easier, harder, or about the same difficulty to compute as the original "dx" integral?
- 3. Consider the integral $\int 5xe^{4x^2} dx$.
 - (a) If we let $u = x^2$, then what must go in the blank below?

$$\int 5xe^{4x^2} dx = \int \underline{\qquad} du$$

(b) If we let $u = 4x^2$, then what must go in the blank below?

$$\int 5xe^{4x^2} dx = \int \underline{\qquad} du$$

(c) If we let u = 2x, then what must go in the blank below?

$$\int 5xe^{4x^2} dx = \int \underline{\qquad} du$$

- (d) Do any of the new "du" integrals look like they will be easier to compute than the original "dx" integral? If so, which one(s)?
- 4. (a) If $u = x^2$, then what must go in the blank below?

$$\int \underline{\qquad} dx = \int \frac{\sin u}{u^5} \ du$$

(b) If $u = \tan x$, then what must go in the blank below?

$$\int dx = \int u^2 + 5u \ du$$

5. Compute the following integrals.

(a)
$$\int x\sqrt{5x^2+2}\ dx$$

(b)
$$\int e^x \sqrt{2 + e^x} \ dx$$

(c)
$$\int \frac{(\ln x)^5}{x} \ dx$$

(d)
$$\int \frac{e^x}{e^x + 1} \, dx$$