- 1. A right triangle has a side of length $\sqrt{4-x^2}$ and a side of length x, neither of which are the hypotenuse. What is the length of the other side? Draw a labeled right triangle.
- 2. A right triangle has a side of length $\sqrt{4 + x^2}$ and a side of length 2, one of which is the hypotenuse. What is the length of the other side? Draw a labeled right triangle.
- 3. A right triangle has a side of length $\sqrt{x^2 4}$ and a side of length 2, neither of which is the hypotenuse. What is the length of the other side? Draw a labeled right triangle.
- 4. Consider the integral below.

$$\int \frac{1}{\sqrt{4-x^2}} \, dx$$

- (a) Look at your triangle from Problem 1. There are two non-right angles, for which of the angles will $\sin u = \frac{x}{2}$? Label that angle u.
- (b) If $\sin u = \frac{x}{2}$, then $x = 2 \sin u$. What does dx equal?
- (c) Rewrite the above integral in terms of u.
- (d) Use the above substitution to compute $\int \frac{1}{\sqrt{4-x^2}} dx$.

5. In the above problem we used the fact that $\sin u = \frac{x}{2}$ to help us figure out $\int \frac{1}{\sqrt{4-x^2}} dx$.

(a) If the integral was $\int \frac{1}{\sqrt{4+x^2}} dx$ instead, we would use the triangle in problem 2.

In your triangle for Problem 2 label the angle u for which $\tan u = \frac{x}{2}$.

- (b) Make this substitution to get the integral in terms of u. Why is this substitution useful?
- (c) If the integral was $\int \frac{1}{\sqrt{x^2-4}} dx$ instead, we would use the triangle in problem 3.

In your triangle for Problem 3 label the angle u for which sec $u = \frac{x}{2}$.

(d) Make this substitution to get the integral in terms of u. Why is this substitution useful?

Compute the following integrals.

6.
$$\int \frac{x^3}{\sqrt{x^2+1}} dx$$
 7. $\int \frac{\sqrt{x^2-1}}{x^3} dx$ 8. $\int \frac{1}{e^x \sqrt{1-e^{2x}}} dx$