Math 31 - Workshop \#11

1. A right triangle has a side of length $\sqrt{4-x^{2}}$ and a side of length x, neither of which are the hypotenuse. What is the length of the other side? Draw a labeled right triangle.
2. A right triangle has a side of length $\sqrt{4+x^{2}}$ and a side of length 2 , one of which is the hypotenuse. What is the length of the other side? Draw a labeled right triangle.
3. A right triangle has a side of length $\sqrt{x^{2}-4}$ and a side of length 2 , neither of which is the hypotenuse. What is the length of the other side? Draw a labeled right triangle.
4. Consider the integral below.

$$
\int \frac{1}{\sqrt{4-x^{2}}} d x
$$

(a) Look at your triangle from Problem 1. There are two non-right angles, for which of the angles will $\sin u=\frac{x}{2}$? Label that angle u.
(b) If $\sin u=\frac{x}{2}$, then $x=2 \sin u$. What does $d x$ equal?
(c) Rewrite the above integral in terms of u.
(d) Use the above substitution to compute $\int \frac{1}{\sqrt{4-x^{2}}} d x$.
5. In the above problem we used the fact that $\sin u=\frac{x}{2}$ to help us figure out $\int \frac{1}{\sqrt{4-x^{2}}} d x$.
(a) If the integral was $\int \frac{1}{\sqrt{4+x^{2}}} d x$ instead, we would use the triangle in problem 2.

In your triangle for Problem 2 label the angle u for which $\tan u=\frac{x}{2}$.
(b) Make this substitution to get the integral in terms of u. Why is this substitution useful?
(c) If the integral was $\int \frac{1}{\sqrt{x^{2}-4}} d x$ instead, we would use the triangle in problem 3.

In your triangle for Problem 3 label the angle u for which $\sec u=\frac{x}{2}$.
(d) Make this substitution to get the integral in terms of u. Why is this substitution useful?

Compute the following integrals.
6. $\int \frac{x^{3}}{\sqrt{x^{2}+1}} d x$
7. $\int \frac{\sqrt{x^{2}-1}}{x^{3}} d x$
8. $\int \frac{1}{e^{x} \sqrt{1-e^{2 x}}} d x$

