1. Compute $\int \frac{x^{3}}{1-x^{2}} d x$.
2. Consider the region between the graph of $y=\frac{1}{x}$ and the x-axis, with $x \geq 1$. The solid obtained by rotating this region about the x-axis is called Gabriel's horn. Find the volume of Gabriel's horn.
3. (a) Find the total area of the four rectangles below.

(b) Without actually computing $\int_{1}^{5} \frac{1}{x} d x$, determine whether or not the result will be larger or smaller than the area of the four rectangles above. Why?
(c) Without actually computing the area, determine if the area of the shaded region below will be larger or smaller than the area of the four rectangles above? Why?

(d) Find the area of the shaded region above.
4. (a) Compute $\int_{1}^{\infty} \frac{1}{x^{5}} d x$.
(b) Consider $\int_{1}^{\infty} \frac{1}{x^{8}} d x$. Without actually computing this integral, determine if it will be larger or smaller than the integral in the previous problem. Why?
