1. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $\left\{\frac{(-1)^{n} \sqrt{n}}{\ln (n+1)}\right\}$
(b) $\left\{\frac{5^{n}+3^{n}}{n!+3\left(5^{n}\right)}\right\}$
(c) $\left\{\frac{n!}{(n+1)!+n^{2}}\right\}$
(d) $\left\{\cos \left(\pi \cdot \frac{2^{n}+n^{3}}{2^{n+1}}\right)\right\}$
2. Consider the sequence $2,2 \frac{1}{2}, 2 \frac{1}{3}, 2 \frac{1}{4}, 2 \frac{1}{5}, \ldots$.
(a) What is the sum of the first three terms?
(b) How many terms could you add so that the sum is bigger than 8 ?
(c) How many terms could you add so that the sum is bigger than 20 ?
(d) How many terms could you add so that the sum is bigger than 500 ?
(e) Do you think we can add enough terms so that the sum is as big as we want? Why or why not?
3. Consider the sequence $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots$.
(a) Compute the following.

$$
\begin{aligned}
& \text { Sum of the first two terms }= \\
& \text { Sum of the first three terms }= \\
& \text { Sum of the first four terms }= \\
& \text { Sum of the first five terms }= \\
& \text { Sum of the first six terms }= \\
& \text { Sum of the first seven terms }=
\end{aligned}
$$

(b) Looking at the pattern above, what number does it appear those partial sums are approaching?
4. Suppose there is a sequence $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$, and each one of the terms is bigger than $\frac{1}{3}$.
(a) How many terms could you add to be sure the sum was bigger than 5 ?
(b) How many terms could you add to be sure the sum was bigger than 27 ?
(c) Do you think we can add enough terms so that the sum is as big as we want? Why or why not?

