1. Determine whether the following series converge absolutely, converge conditionally, or diverge.

(a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n}+1}{n^2-1}$$
 (e) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt[3]{\ln n}}$
(b) $\sum_{n=3}^{\infty} \frac{(-1)^n \ln n}{n^2}$ (f) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n+3^n}{n!+2^n}$
(c) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n+\ln n}$ (g) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n^2+3}}{\sqrt[3]{n^5+2n+1}}$
(d) $\sum_{n=2}^{\infty} \frac{(-n)^n}{2^n}$ (h) $\sum_{n=1}^{\infty} (-1)^n \frac{n+2^n}{2^n\sqrt{n^2+2^n}}$

- 2. Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ represent a cubic polynomial that we choose in order to closely approximate $f(x) = \sqrt{x+4}$. Suppose we do this by requiring that p(0) = f(0), p'(0) = f'(0), p''(0) = f''(0).
 - (a) What must a_0, a_1, a_2, a_3 equal?
 - (b) Now that you've found the polynomial p(x), graph it and f(x) on the same screen of your calculator to see how closely p approximates f. On what interval would you say p is a good approximation of f?