1. Determine whether the following series converge absolutely, converge conditionally, or diverge.
(a) $\sum_{n=2}^{\infty}(-1)^{n} \frac{\sqrt{n}+1}{n^{2}-1}$
(e) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \sqrt[3]{\ln n}}$
(b) $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln n}{n^{2}}$
(f) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}+3^{n}}{n!+2^{n}}$
(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n+\ln n}$
(g) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n^{2}+3}}{\sqrt[3]{n^{5}+2 n+1}}$
(d) $\sum_{n=2}^{\infty} \frac{(-n)^{n}}{2^{n}}$
(h) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+2^{n}}{2^{n} \sqrt{n^{2}+2^{n}}}$
2. Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ represent a cubic polynomial that we choose in order to closely approximate $f(x)=\sqrt{x+4}$. Suppose we do this by requiring that $p(0)=f(0), p^{\prime}(0)=f^{\prime}(0)$, $p^{\prime \prime}(0)=f^{\prime \prime}(0)$, and $p^{\prime \prime \prime}(0)=f^{\prime \prime \prime}(0)$.
(a) What must $a_{0}, a_{1}, a_{2}, a_{3}$ equal?
(b) Now that you've found the polynomial $p(x)$, graph it and $f(x)$ on the same screen of your calculator to see how closely p approximates f. On what interval would you say p is a a good approximation of f ?
